IPsec (IP Security)

Материал из Национальной библиотеки им. Н. Э. Баумана
Последнее изменение этой страницы: 17:22, 18 января 2019.
IPsec
Communications protocol
IPSec.jpg
IPsec (IP Security)
Purpose сетевой протокол
Developer(s) IPSec Internet Engineering Task Force ( IETF)
Introduced 1995 год

IPSec (англ. Internet Protocol Security) - это структура открытых стандартов для обеспечения конфиденциальных, безопасных соединений по интернет-протоколу (IP) сетей, за счет использования криптографических служб безопасности. IPSec поддерживает аутентификацию сторон на сетевом уровне, проверку подлинности источника данных, целостность данных, конфиденциальность данных (шифрование) и защиту от повторного воспроизведения. Внедрение IPSec компанией Microsoft основано на стандартах, разработанных в рабочей группе IPSec Internet Engineering Task Force ( IETF).

IPSec поддерживается Microsoft Windows Server 2003, Windows XP и операционной системой Windows 2000 и интегрировано со службой каталогов Active Directory. Политика IPSec может быть назначена через конфигурацию групповой политики доменов Active Directory и организационных подразделений. Это позволяет назначать политику IPSec на домен, сайт или уровень подразделения организации, что упрощает развертывание IPSec (см. рисунок 1).


Содержание

Введение

Необходимость защиты данных

В конце шестидесятых годов американское агентство перспективных исследований в обороне DARPA приняло решение о создании экспериментальной сети под названием ARPANet. В семидесятых годах ARPANet стала считаться действующей сетью США, и через эту сеть можно было получить доступ к ведущим университетским и научным центрам США. В начале восьмидесятых годов началась стандартизация языков программирования, а затем и протоколов взаимодействия сетей. Результатом этой работы стала разработка семиуровневой модели сетевого взаимодействия ISO/OSI и семейства протоколов TCP/IP, которое стало основой для построения как локальных, так и глобальных сетей.

Базовые механизмы информационного обмена в сетях TCP/IP были в целом сформированы в начале восьмидесятых годов, и были направлены прежде всего на обеспечение доставки пакетов данных между различными операционными системами с использованием разнородных каналов связи. Несмотря на то, что идея создания сети ARPANet (впоследствии превратившейся в современный Интернет) принадлежала правительственной оборонной организации, фактически сеть зародилась в исследовательском мире, и наследовала традиции открытости академического сообщества. Ещё до коммерциализации Интернета (которая произошла в середине девяностых годов) многие авторитетные исследователи отмечали проблемы, связанные с безопасностью стека протоколов TCP/IP. Основные концепции протоколов TCP/IP не полностью удовлетворяют (а в ряде случаев и противоречат) современным представлениям о компьютерной безопасности.

До недавнего времени сеть Интернет использовалась в основном для обработки информации по относительно простым протоколам: электронная почта, передача файлов, удалённый доступ. Сегодня, благодаря широкому распространению технологий WWW, всё активнее применяются средства распределённой обработки мультимедийной информации. Одновременно с этим растёт объём данных, обрабатываемых в средах клиент/сервер и предназначенных для одновременного коллективного доступа большого числа абонентов. Разработано несколько протоколов прикладного уровня, обеспечивающих информационную безопасность таких приложений, как электронная почта (PEM, PGP и т.п.), WWW (Secure HTTP, SSL и т.п.), сетевое управление (SNMPv2 и т.п.). Однако наличие средств обеспечения безопасности в базовых протоколах семейства TCP/IP позволит осуществлять информационный обмен между широким спектром различных приложений и сервисных служб. [Источник 1]

Рисунок 1 - Пример работы IPsec

Краткая историческая справка появления протокола

Первоначально сеть Интернет была создана как безопасная среда передачи данных между военными. Так как с ней работал только определённый круг лиц, людей образованных и имеющих представления о политике безопасности, то явной нужды построения защищённых протоколов не было. Безопасность организовывалась на уровне физической изоляции объектов от посторонних лиц, и это было оправдано, когда к сети имело доступ ограниченное число машин. Однако, когда Интернет стал публичным и начал активно развиваться и разрастаться, такая потребность появилась.

В 1994 году Совет по архитектуре Интернет (IAB) выпустил отчет "Безопасность архитектуры Интернет". В этом документе описывались основные области применения дополнительных средств безопасности в сети Интернет, а именно защита от несанкционированного мониторинга, подмены пакетов и управления потоками данных. В числе первоочередных и наиболее важных защитных мер указывалась необходимость разработки концепции и основных механизмов обеспечения целостности и конфиденциальности потоков данных. Поскольку изменение базовых протоколов семейства TCP/IP вызвало бы полную перестройку сети Интернет, была поставлена задача обеспечения безопасности информационного обмена в открытых телекоммуникационных сетях на базе существующих протоколов. Таким образом, начала создаваться спецификация Secure IP, дополнительная по отношению к протоколам IPv4 и IPv6. В 1995 году рабочая группа опубликовала RFC-1825 - RFC-1827 с первым рабочим внедрением протокола.

Особенности

Специфика IPsec состоит в том, что он реализуется на сетевом уровне, дополняя его таким образом, чтобы для последующих уровней все происходило незаметно. Основная сложность состоит в том, что в процессе установления соединения двум участникам защищенного канала необходимо согласовать довольно большое количество различных параметров. А именно — они должны аутентифицировать друг друга, сгенерировать и обменяться ключами (причем через недоверенную среду), а также договориться, с помощью каких протоколов шифровать данные.

Именно по этой причине IPsec и состоит из стека протоколов, обязанность которых лежит в том, чтобы обеспечить установление защищенного соединения, его работу и управление им. Весь процесс установления соединения включает две фазы: первая фаза применяется для того, чтобы обеспечить безопасный обмен ISAKMP-сообщений уже во второй фазе. ISAKMP (Internet Security Association and Key Management Protocol) — это протокол, который служит для согласования и обновления политик безопасности (SA) между участниками VPN-соединения. В этих политиках как раз и указано, с помощью какого протокола шифровать (AES или 3DES) и с помощью чего аутентифицировать (SHA или MD5). [Источник 2]

Основные понятия

AES (Advanced Encryption Standard), также известный как Rijndael — симметричный алгоритм блочного шифрования (размер блока 128 бит, ключ 128/192/256 бит), принятый в качестве стандарта шифрования правительством США по результатам конкурса AES. По состоянию на 2009 год AES является одним из самых распространённых алгоритмов симметричного шифрования.

DES (Data Encryption Standard) — симметричный алгоритм шифрования, разработанный фирмой IBM и утвержденный правительством США в 1977 году как официальный стандарт (FIPS 46-3). DES имеет блоки по 64 бита и 16 цикловую структуру сети Фейстеля, для шифрования использует ключ с длиной 56 бит. Алгоритм использует комбинацию нелинейных (S-блоки) и линейных (перестановки E, IP, IP-1) преобразований.

3DES (Triple Data Encryption Standard) — симметричный блочный шифр, созданный Уитфилдом Диффи, Мартином Хеллманом и Уолтом Тачманном в 1978 году на основе алгоритма DES, с целью устранения главного недостатка последнего — малой длины ключа (56 бит), который может быть взломан методом полного перебора ключа. Скорость работы 3DES в 3 раза ниже, чем у DES, но криптостойкость намного выше — время, требуемое для криптоанализа 3DES, может быть в миллиард раз больше, чем время, нужное для вскрытия DES. 3DES используется чаще, чем DES, который легко ломается при помощи сегодняшних технологий (в 1998 году организация Electronic Frontier Foundation, используя специальный компьютер DES Cracker, вскрыла DES за 3 дня). 3DES является простым способом устранения недостатков DES. Алгоритм 3DES построен на основе DES, поэтому для его реализации возможно использовать программы, созданные для DES.

RSA ( Ron Rivest, Adi Shamir, and Leonard Adleman Algorithm) — криптографический алгоритм с открытым ключом. RSA стал первым алгоритмом такого типа, пригодным и для шифрования, и для цифровой подписи. Алгоритм используется в большом числе криптографических приложений.

Certificate — цифровой или бумажный документ, подтверждающий соответствие между открытым ключом и информацией, идентифицирующей владельца ключа. Содержит информацию о владельце ключа, сведения об открытом ключе, его назначении и области применения, название центра сертификации и т. д.

PKI (Public Key Infrastructure, Инфраструктура открытых ключей) — технология аутентификации с помощью открытых ключей. Это комплексная система, которая связывает открытые ключи с личностью пользователя посредством удостоверяющего центра (УЦ).

CRL (Certificate Revocation list) — список отозванных сертификатов. [Источник 3]

Стандарты

RFC 2401 (Security Architecture for the Internet Protocol) — архитектура защиты для протокола IP.
RFC 2402 (IP Authentication header) — аутентификационный заголовок IP.
RFC 2403 (The Use of HMAC-MD5-96 within ESP and AH) — использование алгоритма хэширования MD-5 для создания аутентификационного заголовка.
RFC 2404 (The Use of HMAC-SHA-1-96 within ESP and AH) — использование алгоритма хэширования SHA-1 для создания аутентификационного заголовка.
RFC 2405 (The ESP DES-CBC Cipher Algorithm With Explicit IV) — использование алгоритма шифрования DES.
RFC 4303 (ранее RFC 2406) (IP Encapsulating Security Payload [ESP]) — шифрование данных.
RFC 2407 (The Internet IP Security Domain of Interpretation for ISAKMP) — область применения протокола управления ключами.
RFC 2408 (Internet Security Association and Key Management Protocol [ISAKMP]) — управление ключами и аутентификаторами защищённых соединений.
RFC 2409 (The Internet Key Exchange [IKE]) — обмен ключами.
RFC 2410 (The NULL Encryption Algorithm and Its Use With IPsec) — нулевой алгоритм шифрования и его использование.
RFC 2411 (IP Security Document Roadmap) — дальнейшее развитие стандарта.
RFC 2412 (The OAKLEY Key Determination Protocol) — проверка соответствия ключа. [Источник 4]

Архитектура IPSec

Уровни OSI Протокол защищённого канала
Прикладной уровень S/MIME
Уровень представления SSL, TLS
Сеансовый уровень PPTP
Транспортный уровень AH, ESP
Сетевой уровень IPsec
Канальный уровень PPP
Физический уровень Текст ячейки

Построение защищённого канала связи может быть реализовано на разных уровнях модели OSI. Так, например, популярный SSL-протокол работает на уровне представления, а PPTP — на сеансовом. IP Security — это комплект протоколов, касающихся вопросов шифрования, аутентификации и обеспечения защиты при транспортировке IP-пакетов; в его состав сейчас входят почти 20 предложений по стандартам и 18 RFC.

Спецификация IP Security (известная сегодня как IPsec) разрабатывается Рабочей группой IP Security Protocol IETF. Первоначально IPsec включал в себя 3 алгоритмо-независимые базовые спецификации, опубликованные в качестве RFC-документов "Архитектура безопасности IP", "Аутентифицирующий заголовок (AH)", "Инкапсуляция зашифрованных данных (ESP)" (RFC1825, 1826 и 1827). Необходимо заметить, что в ноябре 1998 года Рабочая группа IP Security Protocol предложила новые версии этих спецификаций, имеющие в настоящее время статус предварительных стандартов, это RFC2401 — RFC2412. Отметим, что RFC1825-27 на протяжении уже нескольких лет считаются устаревшими и реально не используются. Кроме этого, существуют несколько алгоритмо-зависимых спецификаций, использующих протоколы MD5, SHA, DES. Рабочая группа IP Security Protocol разрабатывает также и протоколы управления ключевой информацией. В задачу этой группы входит разработка Internet Key Management Protocol (IKMP), протокола управления ключами прикладного уровня, не зависящего от используемых протоколов обеспечения безопасности. В настоящее время рассматриваются концепции управления ключами с использованием спецификации Internet Security Association and Key Management Protocol (ISAKMP) и протокола Oakley Key Determination Protocol. Спецификация ISAKMP описывает механизмы согласования атрибутов используемых протоколов, в то время как протокол Oakley позволяет устанавливать сессионные ключи на компьютеры сети Интернет. Ранее рассматривались также возможности использования механизмов управления ключами протокола SKIP, однако сейчас такие возможности реально практически нигде не используются. Создаваемые стандарты управления ключевой информацией, возможно, будут поддерживать Центры распределения ключей, аналогичные используемым в системе Kerberos. Протоколами ключевого управления для IPSec на основе Kerberos сейчас занимается относительно новая рабочая группа KINK (Kerberized Internet Negotiation of Keys). Гарантии целостности и конфиденциальности данных в спецификации IPsec обеспечиваются за счет использования механизмов аутентификации и шифрования соответственно. Последние, в свою очередь, основаны на предварительном согласовании сторонами информационного обмена т.н. "контекста безопасности" – применяемых криптографических алгоритмов, алгоритмов управления ключевой информацией и их параметров. Спецификация IPsec предусматривает возможность поддержки сторонами информационного обмена различных протоколов и параметров аутентификации и шифрования пакетов данных, а также различных схем распределения ключей. При этом результатом согласования контекста безопасности является установление индекса параметров безопасности (SPI), представляющего собой указатель на определенный элемент внутренней структуры стороны информационного обмена, описывающей возможные наборы параметров безопасности. По сути, IPSec, который станет составной частью IPv6, работает на третьем уровне, т. е. на сетевом уровне. В результате передаваемые IP-пакеты будут защищены прозрачным для сетевых приложений и инфраструктуры образом. В отличие от SSL (Secure Socket Layer), который работает на четвертом (т. е. транспортном) уровне и теснее связан с более высокими уровнями модели OSI, IPSec призван обеспечить низкоуровневую защиту. К IP-данным, готовым к передаче по виртуальной частной сети, IPSec добавляет заголовок для идентификации защищенных пакетов. Перед передачей по Internet эти пакеты инкапсулируются в другие IP-пакеты. IPSec поддерживает несколько типов шифрования, в том числе Data Encryption Standard и Message Digest 5. Чтобы установить защищенное соединение, оба участника сеанса должны иметь возможность быстро согласовать параметры защиты, такие как алгоритмы аутентификации и ключи. IPSec поддерживает два типа схем управления ключами, с помощью которых участники могут согласовать параметры сеанса. Эта двойная поддержка в свое время вызвала определенные трения в IETF Working Group. С текущей версией IP, IPv4, могут быть использованы или Internet Secure Association Key Management Protocol (ISAKMP), или Simple Key Management for Internet Protocol. С новой версией IP, IPv6, придется использовать ISAKMP, известный сейчас как IKE, хотя не исключается возможность использования SKIP. Однако, следует иметь в виду, что SKIP уже давно не рассматривается как кандидат управления ключами, и был исключён из списка возможных кандидатов ещё в 1997 г. IPsec является набором стандартов Интернет и своего рода «надстройкой» над IP-протоколом. Его ядро составляют три протокола :

  • Authentication Header (АН) обеспечивает целостность передаваемых данных, аутентификацию источника информации и функцию по предотвращению повторной передачи пакетов
  • Encapsulating Security Payload (ESP) обеспечивает конфиденциальность (шифрование) передаваемой информации, ограничение потока конфиденциального трафика. Кроме этого, он может исполнять функции AH: обеспечить целостность передаваемых данных, аутентификацию источника информации и функцию по предотвращению повторной передачи пакетов. При применении ESP в обязательном порядке должен указываться набор услуг по обеспечению безопасности: каждая из его функций может включаться опционально.
  • Internet Security Association and Key Management Protocol (ISAKMP) — протокол, используемый для первичной настройки соединения, взаимной аутентификации конечными узлами друг друга и обмена секретными ключами. Протокол предусматривает использование различных механизмов обмена ключами, включая задание фиксированных ключей, использование таких протоколов, как Internet Key Exchange, Kerberized Internet Negotiation of Keys (RFC 4430) или записей DNS типа IPSECKEY (RFC 4025).

Также одним из ключевых понятий является Security Association (SA). По сути, SA является набором параметров, характеризующим соединение. Например, используемые алгоритм шифрования и хэш-функция, секретные ключи, номер пакета и др. [Источник 1]

Заголовок AH

Аутентифицирующий заголовок (AH) является обычным опциональным заголовком и, как правило, располагается между основным заголовком пакета IP и полем данных. Наличие AH никак не влияет на процесс передачи информации транспортного и более высокого уровней. Основным и единственным назначением AH является обеспечение защиты от атак, связанных с несанкционированным изменением содержимого пакета, и в том числе от подмены исходного адреса сетевого уровня. Протоколы более высокого уровня должны быть модифицированы в целях осуществления проверки аутентичности полученных данных. Формат AH достаточно прост и состоит из 96-битового заголовка и данных переменной длины, состоящих из 32-битовых слов. Названия полей достаточно ясно отражают их содержимое: Next Header указывает на следующий заголовок, Payload Len представляет длину пакета, SPI является указателем на контекст безопасности и Sequence Number Field содержит последовательный номер пакета. Последовательный номер пакета был введен в AH в 1997 году в ходе процесса пересмотра спецификации IPsec. Значение этого поля формируется отправителем и служит для защиты от атак, связанных с повторным использованием данных процесса аутентификации. Поскольку сеть Интернет не гарантирует порядок доставки пакетов, получатель должен хранить информацию о максимальном последовательном номере пакета, прошедшего успешную аутентификацию, и о получении некоторого числа пакетов, содержащих предыдущие последовательные номера (обычно это число равно 64). В отличие от алгоритмов вычисления контрольной суммы, применяемых в протоколах передачи информации по коммутируемым линиям связи или по каналам локальных сетей и ориентированных на исправление случайных ошибок среды передачи, механизмы обеспечения целостности данных в открытых телекоммуникационных сетях должны иметь средства защиты от внесения целенаправленных изменений. Одним из таких механизмов является специальное применение алгоритма MD5: в процессе формирования AH последовательно вычисляется хэш-функция от объединения самого пакета и некоторого предварительно согласованного ключа, а затем от объединения полученного результата и преобразованного ключа. Данный механизм применяется по умолчанию в целях обеспечения всех реализаций IPv6, по крайней мере, одним общим алгоритмом, не подверженным экспортным ограничениям.

Заголовок ESP

В случае использования инкапсуляции зашифрованных данных заголовок ESP является последним в ряду опциональных заголовков, "видимых" в пакете. Поскольку основной целью ESP является обеспечение конфиденциальности данных, разные виды информации могут требовать применения существенно различных алгоритмов шифрования. Следовательно, формат ESP может претерпевать значительные изменения в зависимости от используемых криптографических алгоритмов. Тем не менее, можно выделить следующие обязательные поля: SPI, указывающее на контекст безопасности и Sequence Number Field, содержащее последовательный номер пакета. Поле "ESP Authentication Data" (контрольная сумма), не является обязательным в заголовке ESP. Получатель пакета ESP расшифровывает ESP заголовок и использует параметры и данные применяемого алгоритма шифрования для декодирования информации транспортного уровня. Различают два режима применения ESP и AH (а также их комбинации) — транспортный и туннельный.

AH и ESP

AH (англ. Authentication Header) и ESP (англ. Encapsulating Security Payload) являются двумя основными wire-level протоколами, используемыми IPsec, и они выполняют аутентификацию (AH) и шифрование + аутентификацию (ESP) потока данных, проходящего по этому соединению. Они, как правило, используются независимо друг от друга, хотя возможно (но не всегда) использовать их вместе.

Транспортный режим

Транспортный режим используется для шифрования поля данных IP пакета, содержащего протоколы транспортного уровня (TCP, UDP, ICMP), которое, в свою очередь, содержит информацию прикладных служб. Как и в случае AH, транспортный режим предполагает инкапсуляцию поля данных дейтограмм, и протокол ориентирован на обмен машина-машина. Исходный IP заголовок оставлен на месте (за исключением замененного поля протокол), и это означает, что адреса отправителя и получателя также остаются неизмененными. Примером применения транспортного режима является передача электронной почты. Все промежуточные узлы на маршруте пакета от отправителя к получателю используют только открытую информацию сетевого уровня и, возможно, некоторые опциональные заголовки пакета (в IPv6). Недостатком транспортного режима является отсутствие механизмов скрытия конкретных отправителя и получателя пакета, а также возможность проведения анализа трафика. Результатом такого анализа может стать информация об объемах и направлениях передачи информации, области интересов абонентов, расположение руководителей.

Рисунок 2 - Транспортный режим

Туннельный режим

Туннельный режим предполагает шифрование всего пакета, включая заголовок сетевого уровня. Туннельный режим применяется в случае необходимости скрытия информационного обмена организации с внешним миром. При этом, адресные поля заголовка сетевого уровня пакета, использующего туннельный режим, заполняются межсетевым экраном организации и не содержат информации о конкретном отправителе пакета. При передаче информации из внешнего мира в локальную сеть организации в качестве адреса назначения используется сетевой адрес межсетевого экрана. После расшифровки межсетевым экраном начального заголовка сетевого уровня пакет направляется получателю. Реализация шифрованного соединения в туннельном режиме очень близка к традиционным VPN.

В отличие от AH, где наблюдатель может легко сказать, происходил обмен в туннельном или транспортном режиме, здесь эта информация недоступна. Это происходит из-за того, что указание на то, что следующий заголовок является IP, находится в зашифрованном поле данных и, поэтому не виден для участника, неспособного дешифровать пакет. [Источник 5]

Рисунок 3 - Туннельный режим

Security Associations

Security Association (SA) — это соединение, которое предоставляет службы обеспечения безопасности трафика, который передаётся через него. Два компьютера на каждой стороне SA хранят режим, протокол, алгоритмы и ключи, используемые в SA. Каждый SA используется только в одном направлении. Для двунаправленной связи требуется два SA. Каждый SA реализует один режим и протокол; таким образом, если для одного пакета необходимо использовать два протокола (как например AH и ESP), то требуется два SA. Для начала обмена данными между двумя сторонами необходимо установить соединение, которое носит название SA (Security Association). Концепция SA фундаментальна для IPsec, собственно, является его сутью. Она описывает, как стороны будут использовать сервисы для обеспечения защищённого общения. Соединение SA является симплексным (однонаправленным), поэтому для взаимодействия сторон необходимо установить два соединения. Стоит также отметить, что стандарты IPsec позволяют конечным точкам защищённого канала использовать как одно SA для передачи трафика всех взаимодействующих через этот канал хостов, так и создавать для этой цели произвольное число безопасных ассоциаций, например, по одной на каждое TCP-соединение. Это дает возможность выбирать нужную степень детализации защиты. Установка соединения начинается со взаимной аутентификации сторон. Далее происходит выбор параметров (будет ли осуществляться аутентификация, шифрование, проверка целостности данных) и необходимого протокола (AH или ESP) передачи данных. После этого выбирается конкретные алгоритмы (например, шифрования, хэш-функция) из нескольких возможных схем, некоторые из которых определены стандартом (для шифрования — DES, для хэш-функций — MD5 либо SHA-1), другие добавляются производителями продуктов, использующих IPsec (например Triple DES, Blowfish, CAST). [Источник 1]

Security Associations Database

Все SA хранятся в базе данных SAD (Security Associations Database) IPsec-модуля. Каждое SA имеет уникальный маркер, состоящий из трёх элементов:

  • индекса параметров безопасности (Security Parameters Index, SPI)
  • IP-адреса назначения
  • идентификатора протокола безопасности (ESP или AH)

IPsec-модуль, имея эти три параметра, может отыскать в SAD запись о конкретном SA. В список компонентов SA входят :

Последовательный номер

32-битовое значение, которое используется для формирования поля Sequence Number в заголовках АН и ESP.

Переполнение счетчика порядкового номера

Флаг, который сигнализирует о переполнении счетчика последовательного номера.

Окно для подавления атак воспроизведения

Используется для определения повторной передачи пакетов. Если значение в поле Sequence Number не попадает в заданный диапазон, то пакет уничтожается.

Информация AH

используемый алгоритм аутентификации, необходимые ключи, время жизни ключей и другие параметры.

Информация ESP

алгоритмы шифрования и аутентификации, необходимые ключи, параметры инициализации (например, IV), время жизни ключей и другие параметры

Режим работы IPsec

туннельный или транспортный

Время жизни SA

Задано в секундах или байтах информации, проходящих через туннель. Определяет длительность существования SA, при достижении этого значения текущее SA должно завершиться, при необходимости продолжить соединение, устанавливается новое SA. [Источник 1]

Authentication Header

AH используется для аутентификации отправителя информации, для обеспечения целостности данных и опционально может использоваться для защиты от повторной передачи данных. Аутентификация осуществляется за счет вычисления хэш-функции IP пакета (поля, которые могут меняться в процессе передачи пакета (например, TTL) исключаются). Вычисленная хэш-функция добавляется к заголовку пакета AH и отправляется получателю пакета. Заголовок AH содержит поле Integrity Check Value, которое вычисляется по алгоритмам MD5 или SHA-1. На практике чаще используется HMAC (Hash Message Authentication Code), так он при вычислении хэш-функции использует заранее известный участникам секретный ключ. В свою очередь HMAC использует для вычисления хэш-функции алгоритмы MD5 или SHA-1. В зависимости от используемого алгоритма HMAC будет называться соответственно HMAC-MD5 или HMAC-SHA-1. [Источник 3]

"Authentication Header format"
Offsets Octet16 0 1 2 3
Octet16 Bit10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 0 Next Header Payload Len Reserved
4 32 Security Parameters Index (SPI)
8 64 Sequence Number
C 96 Integrity Check Value (ICV)

....

... ...

Тип следующего заголовка (8 bits)

Тип заголовка протокола, идущего после заголовка AH. По этому полю приёмный IP-sec модуль узнает о защищаемом протоколе верхнего уровня. Значения этого поля для разных протоколов можно посмотреть в RFC 1700.

Длина содержимого (8 bits)

Это поле определяет общий размер АН-заголовка в 32-битовых словах, минус 2. Несмотря на это, при использовании IPv6 длина заголовка должна быть кратна 8 байтам.

Зарезервировано (16 bits)

Зарезервировано. Заполняется нулями.

Индекс параметров системы безопасности (32 bits)

Индекс параметров безопасности. Значение этого поля вместе с IP-адресом получателя и протоколом безопасности (АН-протокол), однозначно определяет защищённое виртуальное соединение (SA) для данного пакета. Диапазон значений SPI 1…255 зарезервирован IANA.

Порядковый номер (32 bits)

Последовательный номер. Служит для защиты от повторной передачи. Поле содержит монотонно возрастающее значение параметра. Несмотря на то, что получатель может отказаться от услуги по защите от повторной передачи пакетов, оно является обязательным и всегда присутствует в AH-заголовке. Передающий IPsec-модуль всегда использует это поле, но получатель может его и не обрабатывать.

Данные аутентификации

Цифровая подпись. Служит для аутентификации и проверки целостности пакета. Должна быть дополнена до размера, кратного 8-байтам для IPv6, и 4-байтам для IPv4. Протокол AH используется для аутентификации, то есть для подтверждения того, что мы связываемся именно с тем, с кем предполагаем, и что данные, которые мы получаем, не искажены при передаче.

Обработка выходных IP-пакетов

Если передающий IPsec-модуль определяет, что пакет связан с SA, которое предполагает AH-обработку, то он начинает обработку. В зависимости от режима (транспортный или режим туннелирования) он по-разному вставляет AH-заголовок в IP-пакет. В транспортном режиме AH-заголовок располагается после заголовка протокола IP и перед заголовками протоколов верхнего уровня (Обычно, TCP или UDP). В режиме туннелирования весь исходный IP-пакет обрамляется сначала заголовком AH, затем заголовком IP-протокола. Такой заголовок называется внешним, а заголовок исходного IP-пакета- внутренним. После этого передающий IPsec-модуль должен сгенерировать последовательный номер и записать его в поле Sequence Number. При установлении SA последовательный номер устанавливается в 0, и перед отправкой каждого IPsec-пакета увеличивается на единицу. Кроме того, происходит проверка- не зациклился ли счетчик. Если он достиг своего максимального значения, то он снова устанавливается в 0. Если используется услуга по предотвращению повторной передачи, то при достижении счетчика своего максимального значения, передающий IPsec-модуль переустанавливает SA. Таким образом обеспечивается защита от повторной посылки пакета- приёмный IPsec-модуль будет проверять поле Sequence Number, и игнорировать повторно приходящие пакеты. Далее происходит вычисление контрольной суммы ICV. Надо заметить, что здесь контрольная сумма вычисляется с применением секретного ключа, без которого злоумышленник сможет заново вычислить хэш, но не зная ключа, не сможет сформировать правильную контрольную сумму. Конкретные алгоритмы, использующиеся для вычисления ICV, можно узнать из RFC 4305. В настоящее время могут применяться, например, алгоритмы HMAC-SHA1-96 или AES-XCBC-MAC-96. Протокол АН вычисляет контрольную сумму (ICV) по следующим полям IPsec-пакета:

поля IP-заголовка, которые не были подвержены изменениям в процессе транслирования, или определены как наиболее важные АН-заголовок (Поля: «Next Header», "Payload Len, «Reserved», «SPI», «Sequence Number», «Integrity Check Value». Поле «Integrity Check Value» устанавливается в 0 при вычислении ICV данные протокола верхнего уровня Если поле может изменяться в процессе транспортировки, то его значение устанавливается в 0 перед вычислением ICV. Исключения составляют поля, которые могут изменяться, но значение которых можно предугадать при приёме. При вычислении ICV они не заполняются нулями. Примером изменяемого поля может служить поле контрольной суммы, примером изменяемого, но предопределенного может являться IP-адрес получателя. Более подробное описание того, какие поля как учитываются при вычислении ICV, можно найти в стандарте RFC 2402.

Обработка входных IP-пакетов

После получения пакета, содержащего сообщение АН-протокола, приёмный IPsec-модуль ищет соответствующее защищённое виртуальное соединение (SA) SAD (Security Associations Database), используя IP-адрес получателя, протокол безопасности (АН) и индекс SPI. Если соответствующее SA не найдено, пакет уничтожается. Найденное защищённое виртуальное соединение (SA) указывает на то, используется ли услуга по предотвращению повторной передачи пакетов, то есть на необходимость проверки поля Sequence Number. Если услуга используется, то поле проверяется. При этом используется метод скользящего окна для ограничения буферной памяти, требуемый для работы протоколу. Приёмный IPsec-модуль формирует окно с шириной W (обычно W выбирается равным 32 или 64 пакетам). Левый край окна соответствует минимальному последовательному номеру (Sequence Number) N правильно принятого пакета. Пакет с полем Sequence Number, в котором содержится значение, начиная от N+1 и заканчивая N+W, принимается корректно. Если полученный пакет оказывается по левую границу окна- он уничтожается. Затем приёмный IPsec-модуль вычисляет ICV по соответствующим полям принятого пакета, используя алгоритм аутентификации, который он узнает из записи об SA, и сравнивает полученный результат со значением ICV, расположенным в поле «Integrity Check Value». Если вычисленное значение ICV совпало с принятым, то пришедший пакет считается действительным и принимается для дальнейшей IP-обработки. Если проверка дала отрицательный результат, то принятый пакет уничтожается.

Encapsulating Security Payload

ESP - протокол безопасности, который обеспечивает конфиденциальность и защиту данных. Возможно использование аутентификации (AH) и обнаружение повторных пересылок. ESP полностью инкапсулирует пакеты. ESP может применяться сам по себе, либо с использованием AH.

MTU

Максимальный размер пакета, который можно передать по виртуальному каналу без фрагментации. Каждый протокол (ESP/AH) должен иметь свой собственный SA для каждого направления, таким образом, связка AH+ESP требует для дуплексного канала наличия четырёх SA. Все эти данные располагаются в SAD.

В SAD содержатся:

  • AH: алгоритм аутентификации.
  • AH: секретный ключ для аутентификации
  • ESP: алгоритм шифрования.
  • ESP: секретный ключ шифрования.
  • ESP: использование аутентификации (да/нет).
  • Параметры для обмена ключами
  • Ограничения маршрутизации
  • Политика IP-фильтрации [Источник 4]

Security Policy Database

Помимо базы данных SAD, реализации IPsec поддерживают базу данных SPD (Security Policy Database — база данных политики безопасности). SPD служит для соотнесения приходящих IP-пакетов с правилами обработки для них. Записи в SPD состоят из двух полей. В первом хранятся характерные признаки пакетов, по которым можно выделить тот или иной поток информации. Эти поля называются селекторами. Примеры селекторов, которые содержатся в SPD:

  • IP-адрес места назначения
  • IP-адрес отправителя
  • Имя пользователя в формате DNS или X.500
  • Порты отправителя и получателя

Второе поле в SPD содержит политику защиты, соответствующую данному потоку пакетов. Селекторы используются для фильтрации исходящих пакетов с целью поставить каждый пакет в соответствие с определенным SA. Когда поступает пакет, сравниваются значения соответствующих полей в пакете (селекторные поля) с теми, которые содержатся в SPD. При нахождении совпадения в поле политики защиты содержится информация о том, как поступать с данным пакетом: передать без изменений, отбросить или обработать. В случае обработки, в этом же поле содержится ссылка на соответствующую запись в SAD. Затем определяется SA для пакета и сопряжённый с ней индекс параметров безопасности (SPI), после чего выполняются операции IPsec (операции протокола AH или ESP). Если пакет входящий, то в нём сразу содержится SPI — проводится соответствующая обработка. [Источник 6]

Политика безопасности

Политика безопасности хранится в SPD (База данных политики безопасности). SPD может указать для пакета данных одно из трёх действий: отбросить пакет, не обрабатывать пакет с помощью IPSec, обработать пакет с помощью IPSec. В последнем случае SPD также указывает, какой SA необходимо использовать (если, конечно, подходящий SA уже был создан) или указывает, с какими параметрами должен быть создан новый SA. SPD является очень гибким механизмом управления, который допускает очень хорошее управление обработкой каждого пакета. Пакеты классифицируются по большому числу полей, и SPD может проверять некоторые или все поля для того, чтобы определить соответствующее действие. Это может привести к тому, что весь трафик между двумя машинами будет передаваться при помощи одного SA, либо отдельные SA будут использоваться для каждого приложения, или даже для каждого TCP соединения. Системы, реализующие IPSec, должны поддерживать две базы данных:

  • базу данных политики безопасности (Security Policy Database, SPD);
  • базу данных протокольных контекстов безопасности (Security Association Database, SAD);

Все IP-пакеты (входящие и исходящие) сопоставляются с упорядоченным набором правил политики безопасности. При сопоставлении используется фигурирующий в каждом правиле селектор - совокупность анализируемых полей сетевого уровня и более высоких протокольных уровней. Первое подходящее правило определяет дальнейшую судьбу пакета:

  • пакет может быть ликвидирован;
  • пакет может быть обработан без участия средств IPSec;
  • пакет должен быть обработан средствами IPSec с учетом набора протокольных контекстов, ассоциированных с правилом;

Таким образом, системы, реализующие IPSec, функционируют как межсетевые экраны, фильтруя и преобразуя потоки данных на основе предварительно заданной политики безопасности.

Далее рассматриваются контексты и политика безопасности, а также порядок обработки сетевых пакетов.

Протокольный контекст безопасности в IPSec - это однонаправленное "соединение" (от источника к получателю), предоставляющее обслуживаемым потокам данных набор защитных сервисов в рамках какого-то одного протокола (AH или ESP). В случае симметричного взаимодействия партнерам придется организовать два контекста (по одному в каждом направлении). Если используются и AH, и ESP, потребуется четыре контекста.

Элементы базы данных протокольных контекстов содержат следующие поля (в каждом конкретном случае некоторые значения полей будут пустыми):

  • используемый в протоколе AH алгоритм аутентификации, его ключи и т.п.;
  • используемый в протоколе ESP алгоритм шифрования, его ключи, начальный вектор и т.п.;
  • используемый в протоколе ESP алгоритм аутентификации, его ключи и т.п.;
  • время жизни контекста;
  • режим работы IPSec: транспортный или туннельный;
  • максимальный размер пакетов;
  • группа полей (счетчик, окно, флаги) для защиты от воспроизведения пакетов;

Пользователями протокольных контекстов, как правило, являются прикладные процессы. Вообще говоря, между двумя узлами сети может существовать произвольное число протокольных контекстов, так как число приложений в узлах произвольно. В качестве пользователей управляющих контекстов обычно выступают узлы сети (поскольку в этих контекстах желательно сосредоточить общую функциональность, необходимую сервисам безопасности всех протокольных уровней эталонной модели для управления криптографическими ключами).

Управляющие контексты - двусторонние, т. е. любой из партнеров может инициировать новый ключевой обмен. Пара узлов может одновременно поддерживать несколько активных управляющих контекстов, если имеются приложения с существенно разными криптографическими требованиями. Например, допустима выработка части ключей на основе предварительно распределенного материала, в то время как другая часть порождается по алгоритму Диффи-Хелмана.

Протокольный контекст для IPSec идентифицируется целевым IP-адресом, протоколом (AH или ESP), а также дополнительной величиной - индексом параметров безопасности (Security Parameter Index, SPI). Последняя величина необходима, поскольку могут существовать несколько контекстов с одинаковыми IP-адресами и протоколами. Далее показано, как используются индексы SPI при обработке входящих пакетов.

IPSec обязывает поддерживать ручное и автоматическое управление контекстами безопасности и криптографическими ключами. В первом случае все системы заранее снабжаются ключевым материалом и иными данными, необходимыми для защищенного взаимодействия с другими системами. Во втором - материал и данные вырабатываются динамически, на основе определенного протокола - IKE, поддержка которого обязательна.

Протокольный контекст создается на базе управляющего с использованием ключевого материала и средств аутентификации и шифрования последнего. В простейшем случае, когда протокольные ключи генерируются на основе существующих. Когда вырабатывался управляющий контекст, для него было создано три вида ключей:

  • SKEYID_d - ключевой материал, используемый для генерации протокольных ключей;
  • SKEYID_a - ключевой материал для аутентификации;
  • SKEYID_e - ключевой материал для шифрования;

Все перечисленные виды ключей задействованы в обмене. Ключом SKEYID_e шифруются сообщения. Ключ SKEYID_a служит аргументом хэш-функций и тем самым аутентифицирует сообщения. Наконец, протокольные ключи - результат применения псевдослучайной (хэш) функции к SKEYID_d с дополнительными параметрами, в число которых входят одноразовые номера инициатора и партнера. В результате создание протокольного контекста оказывается аутентифицированным, защищенным от несанкционированного ознакомления, от воспроизведения сообщений и от перехвата соединения.

Сообщения (1) и (2) могут нести дополнительную нагрузку, например, данные для выработки "совсем новых" секретных ключей или идентификаторы клиентов, от имени которых ISAKMP-серверы формируют протокольный контекст. В соответствии с протоколом IKE, за один обмен (состоящий из трех показанных сообщений) формируется два однонаправленных контекста - по одному в каждом направлении. Получатель контекста задает для него индекс параметров безопасности (SPI), помогающий находить контекст для обработки принимаемых пакетов IPSec.

Протокольные контексты играют вспомогательную роль, будучи лишь средством проведения в жизнь политики безопасности; она должна быть задана для каждого сетевого интерфейса с задействованными средствами IPSec и для каждого направления потоков данных (входящие/исходящие). Согласно спецификациям IPSec, политика рассчитывается на бесконтекстную (независимую) обработку IP-пакетов, в духе современных фильтрующих маршрутизаторов. Разумеется, должны существовать средства администрирования базы данных SPD, так же, как и средства администрирования базы правил межсетевого экрана, однако этот аспект не входит в число стандартизуемых.

С внешней точки зрения, база данных политики безопасности (SPD) представляет собой упорядоченный набор правил. Каждое правило задается как пара:

  • совокупность селекторов;
  • совокупность протокольных контекстов безопасности;

Селекторы служат для отбора пакетов, контексты задают требуемую обработку. Если правило ссылается на несуществующий контекст, оно должно содержать достаточную информацию для его (контекста) динамического создания. В этом случае требуется поддержка автоматического управления контекстами и ключами. В принципе, функционирование системы может начинаться с задания базы SPD при пустой базе контекстов (SAD); последняя будет наполняться по мере необходимости.

Дифференцированность политики безопасности определяется селекторами, употребленными в правилах. Например, пара взаимодействующих хостов может использовать единственный набор контекстов, если в селекторах фигурируют только IP-адреса; с другой стороны, набор может быть своим для каждого приложения, если анализируются номера TCP- и UDP-портов. Аналогично, два защитных шлюза способны организовать единый туннель для всех обслуживаемых хостов или же расщепить его (путем организации разных контекстов) по парам хостов или даже приложений.

Все реализации IPSec должны поддерживать селекцию следующих элементов:

  • исходный и целевой IP-адреса (адреса могут быть индивидуальными и групповыми, в правилах допускаются диапазоны адресов и метасимволы "любой";
  • имя пользователя или узла в формате DNS или X.500;
  • транспортный протокол;
  • номера исходного и целевого портов (здесь также могут использоваться диапазоны и метасимволы);

Обработка исходящего и входящего трафика, не является симметричной. Для исходящих пакетов просматривается база SPD, находится подходящее правило, извлекаются ассоциированные с ним протокольные контексты и применяются соответствующие механизмы безопасности. Во входящих пакетах для каждого защитного протокола уже проставлено значение SPI, однозначно определяющее контекст. Просмотр базы SPD в таком случае не требуется; можно считать, что политика безопасности учитывалась при формировании соответствующего контекста. (Практически это означает, что ISAKMP-пакеты нуждаются в особой трактовке, а правила с соответствующими селекторами должны быть включены в SPD.)

Отмеченная асимметрия отражает определенную незавершенность архитектуры IPSec. В более раннем документе RFC 1825 понятия базы данных политики безопасности и селекторов отсутствовали. В новой редакции сделано полшага вперед - специфицирован просмотр базы SPD как обязательный для каждого исходящего пакета, но не изменена обработка входящих пакетов. Извлечение контекста по индексу SPI эффективнее, чем просмотр набора правил, но при таком подходе, затрудняется оперативное изменение политики безопасности. Что касается эффективности просмотра правил, то ее можно повысить методами кэширования, широко используемыми при реализации IP. [Источник 1]

ISAKMP/Oakley

Протокол ISAKMP определяет общую структуру протоколов, которые используются для установления SA и для выполнения других функций управления ключами. ISAKMP поддерживает несколько Областей Интерпретации (DOI), одной из которых является IPSec-DOI. ISAKMP не определяет законченный протокол, а предоставляет "строительные блоки" для различных DOI и протоколов обмена ключами. Протокол Oakley — это протокол определения ключа, использующий алгоритм замены ключа Диффи-Хеллмана. Протокол Oakley поддерживает идеальную прямую безопасность (Perfect Forward Secrecy — PFS). Наличие PFS означает невозможность расшифровки всего траффика при компрометации любого ключа в системе. [Источник 1]

IKE

Поскольку обе стороны диалога должны знать секретные значения, используемые в процессе хэширования или шифрования, возникает вопрос о том, как происходит обмен этими данными. Собственные ключи требуют ручного ввода секретных значений на обоих концах, предположительно, переданных с помощью какого-либо внешнего механизма, а IKE (Internet Key Exchange) представляет собой сложный механизм для проведения этого онлайн.

IKE — протокол обмена ключами по умолчанию для ISAKMP, на данный момент являющийся единственным. IKE находится на вершине ISAKMP и выполняет, собственно, установление как ISAKMP SA, так и IPSec SA. IKE поддерживает набор различных примитивных функций для использования в протоколах. Среди них можно выделить хэш-функцию и псевдослучайную функцию (PRF). "Хэш-функция" — это функция, устойчивая к коллизиям. Под устойчивостью к коллизиям понимается тот факт, что невозможно найти два разных сообщения m1 и m2, таких, что H(m1)=H(m2), где H — хэш функция. Что касается псеводслучайных функций, то в настоящее время вместо специальных PRF используется хэш функция в конструкции HMAC (HMAC — механизм аутентификации сообщений с использованием хэш функций). Для определения HMAC нам понадобится криптографическая хэш функция (обозначим её как H) и секретный ключ K. Мы предполагаем, что H является хэш функцией, где данные хэшируются с помощью процедуры сжатия, последовательно применяемой к последовательности блоков данных. Мы обозначим за B длину таких блоков в байтах, а длину блоков, полученных в результате хэширования — как L (L<B). Ключ K может иметь длину, меньшую или равную B. Если приложение использует ключи большей длины, сначала мы должны хэшировать сам ключ с использованием H, и только после этого использовать полученную строку длиной L байт, как ключ в HMAC. В обоих случаях рекомендуемая минимальная длина для K составляет L байт. Определим две следующие различные строки фиксированной длины:

ipad = байт 0x36, повторённый B раз; opad = байт 0x5C, повторённый B раз.


IKE совмещает в себе три основных направления (отдельных протокола):

  • ISAKMP (Internet Security Association and Key Management Protocol) - протокол ассоциаций безопасности и управления ключами в интернете; это общее описание (framework) для обеспечения аутентификации и обмена ключей без указания конкретных прикладных алгоритмов;
  • Oakley (Oakley key determination protocol) - протокол определения ключей Окли; он описывает последовательности обмена ключами - моды (mode) и описывает предоставляемые ими функции;
  • SKEMI (Secure Key Exchange Mechanism for Internet) - механизм безопасного обмена ключами в Интернете; он описывает многофункциональные технологии, предоставляющие анонимность, неотрекаемость (аппелируемость) и быстрое обновление ключей;

IKE содержит две фазы согласования ключей. В первой фазе происходит создание защищенного канала, во второй - согласование и обмен ключами, установление SA. Первая фаза использует один из двух режимов: основной (англ. Main Mode) или агрессивный (англ. Aggressive Mode). Различие между ними в уровне защищенности и скорости работы. Основной режим, более медленный, защищает всю информацию, передаваемую между узлами. Агрессивный режим для ускорения работы оставляет ряд параметров открытыми и уязвимыми для прослушивания, его рекомендуется использовать только в случае, когда критическим вопросом является скорость работы. Во второй фазе используется быстрый режим (англ. Quick Mode), названный так потому, что не производит аутентификации узлов, считая, что это было сделано в первой фазе. Эта фаза обеспечивает обмен ключами, с помощью которых происходит шифрование данных.
IKE (произносится айк, аббр. от Internet Key Exchange) — протокол, связывающий все компоненты IPsec в работающее целое. В частности, IKE обеспечивает первоначальную аутентификацию сторон, а также их обмен общими секретными ключами.

Существует возможность вручную установить ключ для сессии (не путать с pre-shared key [PSK] для аутентификации). В этом случае IKE не используется. Однако этот вариант не рекомендуется и используется редко. Традиционно, IKE работает через порт 500 UDP.

Существует IKE и более новая версия протокола: IKEv2. В спецификациях и функционировании этих протоколов есть некоторые различия. IKEv2 устанавливает параметры соединения за одну фазу, состоящую из нескольких шагов. Процесс работы IKE можно разбить на две фазы.

Первая фаза

IKE создает безопасный канал между двумя узлами, называемый IKE security association (IKE SA). Также, в этой фазе два узла согласуют сессионный ключ по алгоритму Диффи-Хеллмана. Первая фаза IKE может проходить в одном из двух режимов:

Основной режим

Состоит из трёх двусторонних обменов между отправителем и получателем: Во время первого обмена согласуются алгоритмы и хэш-функции, которые будут использоваться для защиты IKE соединения, посредством сопоставления IKE SA каждого узла. Используя алгоритм Диффи-Хеллмана, стороны обмениваются общим секретным ключом. Также узлы проверяют идентификацию друг друга путём передачи и подтверждения последовательности псевдослучайных чисел. По зашифрованному IP-адресу проверяется идентичность противоположной стороны. В результате выполнения основного режима создается безопасный канал для последующего ISAKMP — обмена (этот протокол определяет порядок действий для аутентификации соединения узлов, создания и управления SA, генерации ключей, а также уменьшения угроз, таких как DoS-атака или атака повторного воспроизведения).

Агрессивный режим

Этот режим обходится меньшим числом обменов и, соответственно, числом пакетов. В первом сообщении помещается практически вся нужная для установления IKE SA информация: открытый ключ Диффи-Хеллмана, для синхронизации пакетов, подтверждаемое другим участником, идентификатор пакета. Получатель посылает в ответ все, что надо для завершения обмена. Первому узлу требуется только подтвердить соединение. С точки зрения безопасности агрессивный режим слабее, так как участники начинают обмениваться информацией до установления безопасного канала, поэтому возможен несанкционированный перехват данных. Однако, этот режим быстрее, чем основной. По стандарту IKE любая реализация обязана поддерживать основной режим, а агрессивный режим поддерживать крайне желательно.

Вторая фаза

В фазе два IKE существует только один, быстрый, режим. Быстрый режим выполняется только после создания безопасного канала в ходе первой фазы. Он согласует общую политику IPsec, получает общие секретные ключи для алгоритмов протоколов IPsec (AH или ESP), устанавливает IPsec SA. Использование последовательных номеров обеспечивает защиту от атак повторной передачи. Также быстрый режим используется для пересмотра текущей IPsec SA и выбора новой, когда время жизни SA истекает. Стандартно быстрый режим проводит обновление общих секретных ключей, используя алгоритм Диффи-Хеллмана из первой фазы.

Дополнительно

Со временем стало ясно, что только одного PSK недостаточно для обеспечения безопасности. Например, в случае компрометации рабочей станции сотрудника атакующий смог бы сразу получить доступ ко всей внутренней сети предприятия. Поэтому была разработана фаза 1.5 прямо между первой и второй классическими фазами. К слову, эта фаза обычно не используется в стандартном site-to-site VPN-соединении, а применяется при организации удаленных VPN-подключений (наш случай). Эта фаза содержит в себе два новых расширения — Extended Authentication (XAUTH) и Mode-Configuration (MODECFG).

XAUTH — это дополнительная аутентификация пользователей в пределах IKE-протокола. Эту аутентификацию еще иногда называют вторым фактором IPsec. MODECFG служит для передачи дополнительной информации клиенту, это может быть IP-адрес, маска, DNS-сервер и прочее. Видно, что эта фаза просто дополняет ранее рассмотренные, но полезность ее несомненна.

IKEv2 vs IKEv1

Оба протокола работают по UDP-порту с номером 500, но между собой несовместимы, не допускается ситуация, чтобы на одном конце туннеля был IKEv1, а на другом — IKEv2. Вот основные отличия второй версии от первой:

  • В IKEv2 больше нет таких понятий, как aggressive- или main-режимы.
  • В IKEv2 термин первая фаза заменен на IKE_SA_INIT (обмен двумя сообщениями, обеспечивающий согласование протоколов шифрования/хеширования и генерацию ключей DH), а вторая фаза — на IKE_AUTH (тоже два сообщения, реализующие собственно аутентификацию).
  • Mode Config (то, что в IKEv1 называлось фаза 1.5) теперь описан прямо в спецификации протокола и является его неотъемлемой частью.
  • В IKEv2 добавился дополнительный механизм защиты от DoS-атак. Суть его в том, что прежде, чем отвечать на каждый запрос в установлении защищенного соединения (IKE_SA_INIT) IKEv2, VPN-шлюз шлет источнику такого запроса некий cookie и ждет ответа. Если источник ответил — все в порядке, можно начинать с ним генерацию DH. Если же источник не отвечает (в случае с DoS-атакой так и происходит, эта техника напоминает TCP SYN flood), то VPN-шлюз просто забывает о нем. Без этого механизма при каждом запросе от кого угодно VPN-шлюз бы пытался сгенерировать DH-ключ (что достаточно ресурсоемкий процесс) и вскоре бы столкнулся с проблемами. В итоге за счет того, что все операции теперь требуют подтверждения от другой стороны соединения, на атакуемом устройстве нельзя создать большое количество полуоткрытых сессий. [Источник 7]

MD5, SHA-1 и др.

Настройка соединения IPsec включает в себя все виды криптографических решений, но это существенно упрощается тем, что любое данное соединение может использовать не более двух или (редко) трех одновременно.

Аутентификация вычисляет Integrity Check Value (ICV) содержимого пакета, и, как правило, используется криптографический хэш-алгоритм, такой как MD5 или SHA-1. Он включает в себя секретный ключ, известный обоим сторонам, что позволяет получателю вычислить ICV таким же образом. Если получатель получает такое же значение, то это значит, что отправитель успешно аутентифицировался (опираясь на предположение, что криптографические хэши практически невозможно обратить). AH всегда обеспечивает аутентификацию, а для ESP это необязательно. Шифрование использует секретный ключ для шифрования данных перед передачей, что защищает реальное содержимое пакета от прослушки. Существует довольно много вариантов для алгоритмов, распространенными являются DES, 3DES, Blowfish и AES. Возможны и другие. [Источник 8]

Атаки на AH, ESP и IKE

Все виды атак на компоненты IPSec можно разделить на следующие группы: атаки, эксплуатирующие конечность ресурсов системы (типичный пример — атака "Отказ в обслуживании", Denial-of-service или DOS-атака), атаки, использующие особенности и ошибки конкретной реализации IPSec и, наконец, атаки, основанные на слабостях самих протоколов. AH и ESP. Чисто криптографические атаки можно не рассматривать — оба протокола определяют понятие "трансформ", куда скрывают всю криптографию. Если используемый криптоалгоритм стоек, а определенный с ним трансформ не вносит дополнительных слабостей (это не всегда так, поэтому правильнее рассматривать стойкость всей системы — Протокол-Трансформ-Алгоритм), то с этой стороны все нормально. Что остается? Replay Attack — нивелируется за счет использования Sequence Number (в одном единственном случае это не работает — при использовании ESP без аутентификации и без AH). Далее, порядок выполнения действий (сначала шифрация, потом аутентификация) гарантирует быструю отбраковку "плохих" пакетов (более того, согласно последним исследованиям в мире криптографии, именно такой порядок действий наиболее безопасен, обратный порядок в некоторых, правда очень частных случаях, может привести к потенциальным дырам в безопасности; к счастью, ни SSL, ни IKE, ни другие распространенные протоколы с порядком действий "сначала аутентифицировать, потом зашифровать", к этим частным случаям не относятся, и, стало быть, этих дыр не имеют). Остается Denial-Of-Service атака. Как известно, это атака, от которой не существует полной защиты. Тем не менее, быстрая отбраковка плохих пакетов и отсутствие какой-либо внешней реакции на них (согласно RFC) позволяют более-менее хорошо справляться с этой атакой. В принципе, большинству (если не всем) известным сетевым атакам (sniffing, spoofing, hijacking и т.п.) AH и ESP при правильном их применении успешно противостоят. С IKE несколько сложнее. Протокол очень сложный, тяжел для анализа. Кроме того, в силу опечаток (в формуле вычисления HASH_R) при его написании и не совсем удачных решений (тот же HASH_R и HASH_I) он содержит несколько потенциальных "дыр" (в частности, в первой фазе не все Payload в сообщении аутентифицируются), впрочем, они не очень серьезные и ведут, максимум, к отказу в установлении соединения.От атак типа replay, spoofing, sniffing, hijacking IKE более-менее успешно защищается. С криптографией несколько сложнее, — она не вынесена, как в AH и ESP, отдельно, а реализована в самом протоколе. Тем не менее, при использовании стойких алгоритмов и примитивов (PRF), проблем быть не должно. В какой-то степени можно рассматривать как слабость IPsec то, что в качестве единственного обязательного к реализации криптоалгоритма в нынешних спецификациях указывается DES (это справедливо и для ESP, и для IKE), 56 бит ключа которого уже не считаются достаточными. Тем не менее, это чисто формальная слабость — сами спецификации являются алгоритмо-независимыми, и практически все известные вендоры давно реализовали 3DES (а некоторые уже и AES).Таким образом, при правильной реализации, наиболее "опасной" атакой остается Denial-Of-Service. [Источник 1]

Как работает IPsec

В работе протоколов IPsec можно выделить пять этапов:

  1. Первый этап начинается с создания на каждом узле, поддерживающим стандарт IPsec, политики безопасности. На этом этапе определяется, какой трафик подлежит шифрованию, какие функции и алгоритмы могут быть использованы.
  2. Второй этап является по сути первой фазой IKE. Её цель — организовать безопасный канал между сторонами для второй фазы IKE. На втором этапе выполняются:
    • Аутентификация и защита идентификационной информации узлов
    • Проверка соответствий политик IKE SA узлов для безопасного обмена ключами
    • Обмен Диффи-Хеллмана, в результате которого у каждого узла будет общий секретный ключ
    • Создание безопасного канала для второй фазы IKE
  3. Третий этап является второй фазой IKE. Его задачей является создание IPsec-туннеля. На третьем этапе выполняются следующие функции:
    • Согласуются параметры IPsec SA по защищаемому IKE SA каналу, созданному в первой фазе IKE
    • Устанавливается IPsec SA
    • Периодически осуществляется пересмотр IPsec SA, чтобы убедиться в её безопасности
    • (Опционально) выполняется дополнительный обмен Диффи-Хеллмана
  4. Рабочий этап. После создания IPsec SA начинается обмен информацией между узлами через IPsec-туннель, используются протоколы и параметры, установленные в SA.
  5. Прекращают действовать текущие IPsec SA. Это происходит при их удалении или при истечении времени жизни (определенное в SA в байтах информации, передаваемой через канал, или в секундах), значение которого содержится в SAD на каждом узле. Если требуется продолжить передачу, запускается фаза два IKE (если требуется, то и первая фаза) и далее создаются новые IPsec SA. Процесс создания новых SA может происходить и до завершения действия текущих, если требуется непрерывная передача данных. [Источник 1]

Использование

Протокол IPsec используется, в основном, для организации VPN-туннелей. В этом случае протоколы ESP и AH работают в режиме туннелирования. Кроме того, настраивая политики безопасности определенным образом, протокол можно использовать для создания межсетевого экрана. Смысл межсетевого экрана заключается в том, что он контролирует и фильтрует проходящие через него пакеты в соответствии с заданными правилами. Устанавливается набор правил, и экран просматривает все проходящие через него пакеты. Если передаваемые пакеты попадают под действие этих правил, межсетевой экран обрабатывает их соответствующим образом. Например, он может отклонять определенные пакеты, тем самым прекращая небезопасные соединения. Настроив политику безопасности соответствующим образом, можно, например, запретить веб-трафик. Для этого достаточно запретить отсылку пакетов, в которые вкладываются сообщения протоколов HTTP и HTTPS. IPsec можно применять и для защиты серверов — для этого отбрасываются все пакеты, кроме пакетов, необходимых для корректного выполнения функций сервера. Например, для Web-сервера можно блокировать весь трафик, за исключением соединений через 80-й порт протокола TCP, или через порт TCP 443 в случаях, когда применяется HTTPS. С помощью IPsec здесь обеспечивается безопасный доступ пользователей к серверу. При использовании протокола ESP, все обращения к серверу и его ответы шифруются. Однако за VPN шлюзом (в домене шифрования) передаются открытые сообщения. Другие примеры использования IPsec:

  • шифрование трафика между файловым сервером и компьютерами в локальной сети, используя IPsec в транспортном режиме.
  • соединение двух офисов с использованием IPsec в туннельном режиме. [Источник 9]

Оценка протокола

Протокол IPSec получил неоднозначную оценку со стороны специалистов. С одной стороны, отмечается, что протокол IPSec является лучшим среди всех других протоколов защиты передаваемых по сети данных, разработанных ранее (включая разработанный Microsoft PPTP). По мнению другой стороны, присутствует чрезмерная сложность и избыточность протокола. Так, Niels Ferguson и Bruce Schneier в своей работе "A Cryptographic Evaluation of IPsec" отмечают, что они обнаружили серьёзные проблемы безопасности практически во всех главных компонентах IPsec. Эти авторы также отмечают, что набор протоколов требует серьёзной доработки для того, чтобы он обеспечивал хороший уровень безопасности. В работе приведено описание ряда атак, использующих как слабости общей схемы обработки данных, так и слабости криптографических алгоритмов. [Источник 1]

Преимущества и недостатки

IPsec имеет следующие преимущества:

  • Открытый промышленный стандарт. IPSec предоставляет открытый промышленный стандарт как альтернативу проприетарным технологиям безопасности на основе IP. Это позволяет сетевым администраторам извлечь выгоду из полученной оперативной совместимости.
  • Прозрачность. IPSec существует ниже транспортного уровня, что делает его прозрачным для пользователей и приложений, что означает, что нет необходимости изменять сетевые приложения на рабочем столе пользователя, если IPSec реализован в брандмауэре или маршрутизатор.
  • Аутентификация. Стойкие службы аутентификации предотвращают принятие данных за счет использования ложно заявленных идентичностей.
  • Конфиденциальность. Службы конфидениальности предотвращают доступ к важным данным во время их передачи между сторонами.
  • Проверка подлинности происхождения и целостности данных. Проверка подлинности источника данных и целостность обеспечивается значением хэш-кода аутентификации сообщения (HMAC), который входит в каждый пакет.
  • Динамическое перекодирование. Динамическое перекодирование в ходе текущих соединений исключает ручную переконфигурацию секретных ключей и помогает защититься от определения секретного ключа.
  • Безопасные ссылки из конца в конец. IPSec для Windows 2000 предоставляет защищенные ссылки из конца в конец для пользователей частных сетей в пределах одного домена или через какой-либо доверенный домен на предприятии.
  • Централизованное управление. Сетевые администраторы используют политики IPSec для обеспечения надлежащего уровня безопасности в зависимости от пользователя, рабочей группы или по другим критериям. Централизованное управление снижает административные расходы.
  • Гибкость. Гибкость IPSec для Windows 2000 позволяет применять политики в масштабах всего предприятия или к одной рабочей станции.

Хотя IPSec наиболее популярное и, пожалуй, наилучшее решение для создания виртуальных частных сетей, имеются и некоторые ограничения. В случае его применения в транспортном режиме не исключается возможность атак со стороны, что вызвано некоторыми ограничениями протокола ISAKMP. Взлом сессии IPSec вполне вероятен, если не используется заголовок аутентификации AH. При таком типе атаки данные злоумышленника могут быть вставлены в полезную передающуюся информацию, например, в случае Unix-систем достаточно вставить в поток команду rm -R, чтобы получатель в итоге недосчитался многих, а то и всех файлов на жестком диске. Поскольку трафик IPSec маршрутизируем, различные практические реализации IPSec могут подвергнуться более "изящной" атаке - подмене изначального маршрута. Оговоримся, что данный вид атаки возможен лишь при использовании IPSec в транспортном режиме, если же он применяется для построения туннеля, вся роутинговая информация в этом случае шифруется и подобный вид атаки успеха иметь не будет.

Специалисты компании AT&T Research отмечают, что многие потенциально слабые места IPSec являются следствием определенных недостатков алгоритмов шифрования, использованных в конкретной реализации IPSec. Следовательно, с увеличением надежности этих алгоритмов IPSec может стать намного более защищенным.

В настоящее время IPSec - это часть IPv6, но не IPv4. Хотя, конечно же, имеются и реализации IPSec для протокола IP четвертой версии. В реализации для IPv6 некоторые слабые места IPSec, которые все же присутствуют в версии для IPv4, устранены. Так, например, поля фрагментации в заголовке пакета IPv4 потенциально могут быть изменены, поэтому при функционировании IPSec в транспортном режиме злоумышленник может перехватить пакет и изменить поле фрагментации, а затем вставить необходимые данные в передаваемый поток. В IPv6 же промежуточные маршрутизаторы не допускают изменения полей фрагментации. [Источник 10]

Конкуренты

Многие продукты, которые могут использовать IPSec, взаимодействуют с альтернативной технологией шифрования, именуемой "Уровень защищенных сокетов" (Secure Sockets Layer, SSL). Основное различие между IPSec и SSL в том, что IPSec работает на уровне сети, обеспечивая защиту сетевого соединения от начала и до конца. SSL же действует на уровне приложений, обеспечивая защиту лишь выбранному приложению, например веб-браузеру или программе для работы с электронной почтой. Хотя как IPSec, так и SSL призваны обеспечить конфиденциальность обмена информацией, что достигается совершенно различными способами. SSL был разработан компанией Netscape для защиты трафика HTTP, проходящего через программу-браузер. SSL - протокол уровня отдельной сессии, и в этом отношении он, несомненно, проигрывает IPSec, который позволяет построить постоянный туннель, не зависящий от проходящего сквозь него сетевого трафика. Протокол SSL основан на клиент-серверной модели и обычно используется для защиты на отрезке "хост-хост". В связи с тем, что IPSec взаимодействует на сетевом уровне, возможны такие варианты, как "подсеть-подсеть", "сеть-сеть" или "сеть-хост". Это наводит на мысль, что IPSec допускает маршрутизацию, а SSL - нет.

Хотя многие пользователи считают SSL и IPSec конкурирующими разработками, данное утверждение не совсем точно, поскольку IPSec и SSL призваны решать различные проблемы. Если для развертывания IPSec требуется предварительное планирование инфраструктуры, то с SSL все намного проще. Как правило, если и клиент, и сервер изначально способны работать с SSL, то процедура настройки защищенной сессии сводится к крайне тривиальному набору действий, доступному даже начинающему пользователю. [Источник 10]

Сравнение IPSec и SSL

Ниже приведена таблица сравнения IPSec и SSL. [Источник 1]

Особенности IPSec SSL
"Аппаратная независимость" Да Да
"Код" Не требуется изменений для приложений. Может потребовать доступ к исходному коду стека TCP/IP. Требуются изменения в приложениях. Могут потребоваться новые DLL или доступ к исходному коду приложений.
Защита IP пакет целиком. Включает защиту для протоколов высших уровней. Только уровень приложений.
Фильтрация пакетов Основана на аутентифицированных заголовках, адресах отправителя и получателя, и т.п. Простая и дешёвая. Подходит для роутеров Основана на содержимом и семантике высокого уровня. Более интеллектуальная и более сложная.
Производительность Меньшее число переключений контекста и перемещения данных. Большее число переключений контекста и перемещения данных. Большие блоки данных могут ускорить криптографические операции и обеспечить лучшее сжатие.
Платформы Любые системы, включая роутеры В основном, конечные системы (клиенты/серверы), также firewalls.
Firewall/VPN Весь трафик защищён Защищён только трафик уровня приложений. ICMP, RSVP, QoS и т.п. могут быть незащищены.
Прозрачность Для пользователей и приложений Только для пользователей.
Текущий статус Появляющийся стандарт. Широко используется WWW браузерами, также используется некоторыми другими продуктами.

Источники

  1. 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 IPSec — протокол защиты сетевого трафика на IP-уровне // Ixbt. [2019-2019]. Дата обновления: 16.11.2001. URL: http://www.ixbt.com/comm/ipsecure.shtml (дата обращения: 18.01.2019)
  2. Изучаем и выявляем уязвимости протокола IPsec // Хакер. [2019-2019]. Дата обновления: 21.05.2016. URL: https://xakep.ru/2015/05/13/ipsec-security-flaws/ (дата обращения: 17.01.2019)
  3. 3,0 3,1 IPsec // xgu. [2019-2019]. Дата обновления: 08.09.2015. URL: http://xgu.ru:81/wiki/IPsec (дата обращения: 16.01.2019)
  4. 4,0 4,1 IP Security (IPSec) // Википедия. [2019-2019]. Дата обновления: 20.10.2018. URL:https://ru.wikipedia.org/wiki/IPsec (дата обращения: 18.01.2019)
  5. Технология IPsec // book.itep. [2019-2019]. Дата обновления: 21.03.2005. URL: http://book.itep.ru/6/ipsec.htm (дата обращения:17.01.2019)
  6. Изучаем и выявляем уязвимости протокола IPsec // Хакер. [2019-2019]. Дата обновления: 21.05.2016. URL: https://xakep.ru/2015/05/13/ipsec-security-flaws/ (дата обращения: 17.01.2019)
  7. Анатомия IPsec // Хабр. [2006-2019]. Дата обновления: 05.06.2015. URL: https://habr.com/ru/company/xakep/blog/256659/ (дата обращения: 17.01.2019)
  8. Изучаем и выявляем уязвимости протокола IPsec // Хакер. [2019-2019]. Дата обновления: 21.05.2016. URL: https://xakep.ru/2015/05/13/ipsec-security-flaws/ (дата обращения: 17.01.2019)
  9. IPSec // fornex [2019-2019]. Дата обновления: 03.09.2018. URL: https://fornex.com/help/oca-ipsec/ (дата обращения: 18.01.2019)
  10. 10,0 10,1 IPSec: панацея или вынужденная мера? // citforum. [2001-2015]. Дата обновления: 12.05.2005. URL: http://citforum.ru/security/articles/ipsec_standard/ (дата обращения: 16.01.2019)

Ссылки