EFS (Encrypting File System)

Материал из Национальной библиотеки им. Н. Э. Баумана
Последнее изменение этой страницы: 22:34, 25 июня 2016.

EFS (англ. Encrypting File System - Шифрованная файловая система) - это компонент Windows, позволяющий сохранять сведения на жестком диске в зашифрованном формате. Шифрование - это самая сильная защита, которую предоставляет Windows для защиты данных[1].

Общее

Файловая система EFS интегрирована в NTFS, отличается простотой управления и стойкостью к атакам. Пользователи могут выбирать файлы, которые требуется зашифровать, но расшифровывать файлы вручную перед использованием не требуется – можно просто открыть файл и изменить его, как обычно. Зашифрованные файлы будут защищены даже в том случае, если злоумышленник получит физический доступ к компьютеру. Кроме того, даже пользователи, имеющие право на доступ к компьютеру (например, администраторы), не имеют доступа к файлам, зашифрованным с помощью файловой системы EFS другими пользователями. Тем не менее файловая система EFS поддерживает назначенные агенты восстановления. При их правильной настройке можно гарантировать восстановление данных при необходимости.

Некоторые ключевые свойства EFS:

  • Шифрование - простое действие; для его включения достаточно установить флажок в свойствах файла или папки.
  • Можно указать, кому именно разрешается читать эти файлы.
  • Файлы шифруются, когда они закрываются, но при открытии они автоматически готовы к использованию.
  • Если шифровать файл больше нет необходимости, снимите флажок в свойствах файла.

Описание работы

EFS работает, шифруя каждый файл с помощью алгоритма симметричного шифрования, зависящего от версии операционной системы и настроек (начиная с Windows XP доступна теоретическая возможность использования сторонних библиотек для шифрования данных). При этом используется случайно сгенерированный ключ для каждого файла, называемый File Encryption Key (FEK), выбор симметричного шифрования на данном этапе объясняется его скоростью по отношению к асимметричному шифрованию.

FEK (случайный для каждого файла ключ симметричного шифрования) защищается путём асимметричного шифрования, использующего открытый ключ пользователя, шифрующего файл, и алгоритм RSA (теоретически возможно использование других алгоритмов асимметричного шифрования). Зашифрованный таким образом ключ FEK сохраняется в альтернативном потоке $EFS файловой системы NTFS. Для расшифрования данных драйвер шифрованной файловой системы прозрачно для пользователя расшифровывает FEK, используя закрытый ключ пользователя, а затем и необходимый файл с помощью расшифрованного файлового ключа.

Поскольку шифрование/расшифрование файлов происходит с помощью драйвера файловой системы (по сути, надстройки над NTFS), оно происходит прозрачно для пользователя и приложений. Стоит заметить, что EFS не шифрует файлы, передаваемые по сети, поэтому для защиты передаваемых данных необходимо использовать другие протоколы защиты данных (IPSec или WebDAV).

Технология шифрования

EFS использует архитектуру Windows CryptoAPI. В ее основе лежит технология шифрования с открытым ключом. Для шифрования каждого файла случайным образом генерируется ключ шифрования файла. При этом для шифрования файла может применяться любой симметричный алгоритм шифрования. В настоящее же время в EFS используется один алгоритм, это DESX, являющийся специальной модификацией широко распространенного стандарта DES. Ключи шифрования EFS хранятся в резидентном пуле памяти (сама EFS расположена в ядре Windows 2000), что исключает несанкционированный доступ к ним через файл подкачки.

Теория

EFS осуществляет шифрование данных, используя схему с общим ключом. Данные шифруются быстрым симметричным алгоритмом при помощи ключа шифрования файла FEK (file encryption key). FEK — это случайным образом сгенерированный ключ определенной длины. Длина ключа в североамериканской версии EFS 128 бит, в международной версии EFS используется уменьшенная длина ключа 40 или 56 бит.

FEK шифруется одним или несколькими общими ключами шифрования, в результате чего получается список зашифрованных ключей FEK. Список зашифрованных ключей FEK хранится в специальном атрибуте EFS, который называется DDF (data decryption field — поле дешифрования данных). Информация, при помощи которой производится шифрование данных, жестко связана с этим файлом. Общие ключи выделяются из пар пользовательских ключей сертификата X509 с дополнительной возможностью использования «File encryption». Личные ключи из этих пар используются при дешифровке данных и FEK. Личная часть ключей хранится либо на смарт-картах, либо в другом надежном месте (например, в памяти, безопасность которой обеспечивается при помощи CryptoAPI).

FEK также шифруется при помощи одного или нескольких ключей восстановления (полученных из сертификатов X509, записанных в политике восстановления зашифрованных данных для данного компьютера, с дополнительной возможностью «File recovery»).

Как и в предыдущем случае, общая часть ключа используется для шифрования списка FEK. Список зашифрованных ключей FEK также хранится вместе с файлом в специальной области EFS, которая называется DRF (data recovery field — поле восстановления данных). Для шифрования списка FEK в DRF используется только общая часть каждой пары ключей. Для нормального осуществления файловых операций необходимы только общие ключи восстановления. Агенты восстановления могут хранить свои личные ключи в безопасном месте вне системы (например, на смарт-картах). На рисунке приведены схемы процессов шифрования, дешифрования и восстановления данных.

Процесс шифрования

Encrypt.gif

Незашифрованный файл пользователя шифруется при помощи случайно сгенерированного ключа FEK. Этот ключ записывается вместе с файлом, файл дешифруется при помощи общего ключа пользователя (записанного в DDF), а также при помощи общего ключа агента восстановления (записанного в DRF).

Процесс дешифрования

Decrypt.gif

Сначала используется личный ключ пользователя для дешифрации FEK — для этого используется зашифрованная версия FEK, которая хранится в DDF. Расшифрованный FEK используется для поблочного дешифрования файла. Если в большом файле блоки считываются не последовательно, то дешифруются только считываемые блоки. Файл при этом остается зашифрованным.

Примечания

Ссылки