Ядро (Операционные Системы)

Материал из Национальной библиотеки им. Н. Э. Баумана
Последнее изменение этой страницы: 15:57, 24 августа 2017.
ядро(ОС)

Ядро операционной системы (Kernel) - часть операционной системы: постоянно находящаяся в оперативной памяти, управляющая всей операционной системой, содержащая: драйверы устройств, подпрограммы управления памятью, планировщик заданий, реализующая системные вызовы и т.п.

Все операции, связанные с процессами, выполняются под управлением той части операционной системы, которая называется ядром. Ядро представляет собой лишь небольшую часть кода операционной системы в целом, однако оно относится к числу наиболее интенсивно используемых компонент системы. По этой причине ядро обычно резидентно размещается в основной памяти, в то время как другие части операционной системы перемещаются во внешнюю память и обратно по мере необходимости. Одной из самых важных функций, реализованных в ядре, является обработка прерываний. В больших многоабонентских системах в процессор поступает постоянный поток прерываний. Быстрая реакция на эти прерывания играет весьма важную роль с точки зрения полноты использования ресурсов системы и обеспечения приемлемых значений времени ответа для пользователей, работающих в диалоговом режиме.

Когда ядро обрабатывает текущее прерывание, оно запрещает другие прерывания и разрешает их снова только после завершения обработки текущего прерывания. При постоянном потоке прерываний может сложиться такая ситуация, что ядро будет блокировать прерывания в течение значительной части времени, т. е. не будет иметь возможности эффективно реагировать на прерывания. Поэтому ядро обычно разрабатывается таким образом, чтобы оно осуществляло лишь минимально возможную предварительную обработку каждого прерывания, а затем передавало это прерывание на дальнейшую обработку соответствующему системному процессу, после начала работы которого ядро могло бы разрешить последующие прерывания.


Основные функции ядра

Основные функция ядра:Ядро операционной системы, как правило, содержит программы для реализации следующих функций:

  • обработка прерываний;
  • создание и уничтожение процессов;
  • переключение процессов из состояния в состояние;
  • диспетчирование ;
  • приостановка и активизация процессов ;
  • синхронизация процессов ;
  • организация взаимодействия между процессами;
  • манипулирование блоками управления процессами;
  • поддержка операций ввода-вывода;
  • поддержка распределения и перераспределения памяти;
  • поддержка работы файловой системы ;
  • поддержка механизма вызова-возврата при обращении к проце¬дурам;
  • поддержка определенных функций по ведению учета работы
  • машины.

Типы архитектур ядер операционных систем

Монолитное ядро

Монолитное ядро предоставляет богатый набор абстракций оборудования. Все части монолитного ядра работают в одном адресном пространстве. Это такая схема операционной системы, при которой все компоненты её ядра являются составными частями одной программы, используют общие структуры данных и взаимодействуют друг с другом путём непосредственного вызова процедур. Монолитное ядро — старейший способ организации операционных систем. Примером систем с монолитным ядром является большинство UNIX-систем.

Достоинства: Скорость работы, упрощённая разработка модулей. Недостатки: Поскольку всё ядро работает в одном адресном пространстве, сбой в одном из компонентов может нарушить работоспособность всей системы. Примеры: Традиционные ядра UNIX (такие как BSD), Linux; ядро MS-DOS, ядро KolibriOS.

Монолитные ядра имеют долгую историю развития и усовершенствования и, на данный момент, являются наиболее архитектурно зрелыми и пригодными к эксплуатации. Вместе с тем, монолитность ядер усложняет их отладку, понимание кода ядра, добавление новых функций и возможностей, удаление «мёртвого», ненужного, унаследованного от предыдущих версий кода. «Разбухание» кода монолитных ядер также повышает требования к объёму оперативной памяти, требуемому для функционирования ядра ОС. Это делает монолитные ядерные архитектуры малопригодными к эксплуатации в системах, сильно ограниченных по объёму ОЗУ, например, встраиваемых системах, производственных микроконтроллерах и т. д.

Модульное ядро

Модульное ядро — современная, усовершенствованная модификация архитектуры монолитных ядер операционных систем. В отличие от «классических» монолитных ядер, модульные ядра, как правило, не требуют полной перекомпиляции ядра при изменении состава аппаратного обеспечения компьютера. Вместо этого модульные ядра предоставляют тот или иной механизм подгрузки модулей ядра, поддерживающих то или иное аппаратное обеспечение (например, драйверов). При этом подгрузка модулей может быть как динамической (выполняемой «на лету», без перезагрузки ОС, в работающей системе), так и статической (выполняемой при перезагрузке ОС после переконфигурирования системы на загрузку тех или иных модулей).

Все модули ядра работают в адресном пространстве ядра и могут пользоваться всеми функциями, предоставляемыми ядром. Поэтому модульные ядра продолжают оставаться монолитными. Модульность ядра осуществляется на уровне бинарного образа, а не на архитектурном уровне ядра, так как динамически подгружаемые модули загружаются в адресное пространство ядра и в дальнейшем работают как интегральная часть ядра. Модульные монолитные ядра не следует путать с архитектурным уровнем модульности, присущий микроядрам и гибридным ядрам. Практически, динамичная загрузка модулей, это просто более гибкий способ изменения образа ядра во время выполнения — в отличие от перезагрузки с другим ядром. Модули позволяют легко расширить возможности ядра по мере необходимости.

Модульные ядра удобнее для разработки, чем традиционные монолитные ядра, не поддерживающие динамическую загрузку модулей, так как от разработчика не требуется многократная полная перекомпиляция ядра при работе над какой-либо его подсистемой или драйвером. Выявление, локализация, отладка и устранение ошибок при тестировании также облегчаются. Примером может служить VFS — «виртуальная файловая система», совместно используемая многими модулями файловых систем в ядре Linux.

Микроядро

Микроядро – предоставляет только элементарные функции управления процессами и минимальный набор абстракций для работы с оборудованием. Бо́льшая часть работы осуществляется с помощью специальных пользовательских процессов, называемых сервисами. Решающим критерием «микроядерности» является размещение всех или почти всех драйверов и модулей в сервисных процессах, иногда с явной невозможностью загрузки любых модулей расширения в собственно микроядро, а также разработки таких расширений.

Достоинства: Устойчивость к сбоям оборудования, ошибкам в компонентах системы. Основное достоинство микроядерной архитектуры — высокая степень модульности ядра операционной системы. Это существенно упрощает добавление в него новых компонентов. В микроядерной операционной системе можно, не прерывая её работы, загружать и выгружать новые драйверы, файловые системы и т. д. Существенно упрощается процесс отладки компонентов ядра, так как новая версия драйвера может загружаться без перезапуска всей операционной системы. Компоненты ядра операционной системы ничем принципиально не отличаются от пользовательских программ, поэтому для их отладки можно применять обычные средства. Микроядерная архитектура повышает надежность системы, поскольку ошибка на уровне непривилегированной программы менее опасна, чем отказ на уровне режима ядра.

Недостатки: Передача данных между процессами требует накладных расходов. Классические микроядра предоставляют лишь очень небольшой набор низкоуровневых примитивов, или системных вызовов, реализующих базовые сервисы операционной системы.

Сервисные процессы (в принятой в семействе UNIX терминологии — «демоны») активно используются в самых различных ОС для задач типа запуска программ по расписанию (UNIX и Windows NT), ведения журналов событий (UNIX и Windows NT), централизованной проверки паролей и хранения пароля текущего интерактивного пользователя в специально ограниченной области памяти (Windows NT). Тем не менее, не следует считать ОС микроядерными только из-за использований такой архитектуры. Примеры: Symbian OS; Windows CE; OpenVMS; Mach, используемый в GNU/Hurd и Mac OS X; QNX; AIX; Minix; ChorusOS; AmigaOS; MorphOS.

Экзоядро

Экзоядро — ядро операционной системы, предоставляющее лишь функции для взаимодействия между процессами и безопасного выделения и освобождения ресурсов. Предполагается, что API для прикладных программ будут предоставляться внешними по отношению к ядру библиотеками (откуда и название архитектуры). Возможность доступа к устройствам на уровне контроллеров позволит эффективней решать некоторые задачи, которые плохо вписываются в рамки универсальной ОС, например, реализация СУБД будет иметь доступ к диску на уровне секторов диска, а не файлов и кластеров, что положительно скажется на быстродействии.

Наноядро

Наноядро — архитектура ядра операционной системы, в рамках которой крайне упрощённое и минималистичное ядро выполняет лишь одну задачу — обработку аппаратных прерываний, генерируемых устройствами компьютера. После обработки прерываний от аппаратуры наноядро, в свою очередь, посылает информацию о результатах обработки (например, полученные с клавиатуры символы) вышележащему программному обеспечению при помощи того же механизма прерываний. Примером является KeyKOS — самая первая ОС на наноядре. Первая версия вышла ещё в 1983-м году.

Гибридное ядро

Гибридные ядра — это модифицированные микроядра, позволяющие для ускорения работы запускать «несущественные» части в пространстве ядра. Имеют «гибридные» достоинства и недостатки.

Комбинация разных подходов

Все подходы к построению операционных систем имеют свои достоинства и недостатки. В большинстве случаев современные операционные системы используют различные комбинации этих подходов. Так, например, сейчас ядро «Linux» представляет собой монолитную систему с отдельными элементами модульного ядра. При компиляции ядра можно разрешить динамическую загрузку и выгрузку очень многих компонентов ядра — так называемых модулей. В момент загрузки модуля его код загружается на уровне системы и связывается с остальной частью ядра. Внутри модуля могут использоваться любые экспортируемые ядром функции.

Существуют варианты ОС GNU, в которых вместо монолитного ядра применяется ядро Mach (такое же, как в Hurd), а поверх него крутятся в пользовательском пространстве те же самые процессы, которые при использовании Linux были бы частью ядра. Другим примером смешанного подхода может служить возможность запуска операционной системы с монолитным ядром под управлением микроядра. Микроядро обеспечивает управление виртуальной памятью и работу низкоуровневых драйверов. Все остальные функции, в том числе взаимодействие с прикладными программами, осуществляются монолитным ядром. Данный подход сформировался в результате попыток использовать преимущества микроядерной архитектуры, сохраняя по возможности хорошо отлаженный код монолитного ядра.

Смешанное ядро, в принципе, должно объединять преимущества монолитного ядра и микроядра: казалось бы, микроядро и монолитное ядро — крайности, а смешанное — золотая середина. В них возможно добавлять драйверы устройств двумя способами: и внутрь ядра, и в пользовательское пространство. Но на практике концепция смешанного ядра часто подчёркивает не только достоинства, но и недостатки обоих типов ядер. Примеры: Windows NT, DragonFlyBSD.

Ссылки