Машинный код

Материал из Национальной библиотеки им. Н. Э. Баумана
Последнее изменение этой страницы: 22:49, 20 апреля 2017.

Машинный код или машинный язык представляет собой набор инструкций, выполняемых непосредственно центральным процессором компьютера (CPU). Каждая команда выполняет очень конкретную задачу, например, загрузки (load), перехода (jump) или элементарной арифметической или логической операции для единицы данных в регистре процессора или памяти. Каждая программа выполняется непосредственно процессором и состоит из ряда таких инструкций.

Машинный код можно рассматривать как самое низкоуровневое представление скомпилированной или собранной компьютерной программы или в качестве примитивного и аппаратно-зависимого языка программирования. Писать программы непосредственно в машинном коде возможно, однако это утомительно и подвержено ошибкам, так как необходимо управлять отдельными битами и вычислять числовые адреса и константы вручную. По этой причине машинный код практически не используется для написания программ.

Почти все практические программы сегодня написаны на языках более высокого уровня или ассемблере. Исходный код затем транслируется в исполняемый машинный код с помощью таких утилит, как интерпретаторы, компиляторы, ассемблеры, и/или линкеры.[Источник 1]

Инструкции машинного кода (ISA)

Каждый процессор или семейство процессоров имеет свой собственный набор инструкций машинного кода. Инструкции являются паттернами битов, которые в силу физического устройства соответствуют различным командам машины. Говорят, что процессор A совместим с процессором B, если процессор A полностью «понимает» машинный код процессора B. Если процессоры A и B имеют некоторое подмножество инструкций, по которым они взаимно совместимы, то говорят, что они одной архитектуры. Таким образом, набор команд является специфическим для одного класса процессоров. Новые процессоры одной архитектуры часто включают в себя все инструкции предшественника и могут включать дополнительные. Иногда новые процессоры прекращают поддержку или изменяют значение какого-либо кода команды (как правило, потому, что это необходимо для новых целей), влияя на совместимость кода до некоторой степени; даже почти полностью совместимые процессоры могут показать различное поведение для некоторых команд, но это редко является проблемой.

Системы также могут отличаться в других деталях, таких как расположение памяти, операционные системы или периферийные устройства. Поскольку программа обычно зависит от таких факторов, различные системы, как правило, не запустят один и тот же машинный код, даже если используется тот же тип процессора.[Источник 2]

Виды ISA

x86 всегда был архитектурой с инструкциями переменной длины, так что когда пришла 64-битная эра, расширения x64 не очень сильно повлияли на ISA. ARM это RISC-процессор разработанный с учетом инструкций одинаковой длины, что было некоторым преимуществом в прошлом. Так что в самом начале все инструкции ARM кодировались 4-мя байтами. Это то, что сейчас называется «режим ARM».

На самом деле, самые используемые инструкции процессора на практике могут быть закодированы c использованием меньшего количества информации. Так что была добавлена ISA с названием Thumb, где каждая инструкция кодируется всего лишь 2-мя байтами. Теперь это называется «режим Thumb». Но не все инструкции ARM могут быть закодированы в двух байтах, так что набор инструкций Thumb ограниченный. Код, скомпилированный для режима ARM и Thumb может сосуществовать в одной программе. Затем создатели ARM решили, что Thumb можно расширить: так появился Thumb-2 (в ARMv7). Thumb-2 это всё ещё двухбайтные инструкции, но некоторые новые инструкции имеют длину 4 байта. Распространено заблуждение, что Thumb-2 — это смесь ARM и Thumb. Это неверно. Режим Thumb-2 был дополнен до более полной поддержки возможностей процессора и теперь может легко конкурировать с режимом ARM. Основное количество приложений для iPod/iPhone/iPad скомпилировано для набора инструкций Thumb-2, потому что Xcode делает так по умолчанию. Потом появился 64-битный ARM. Это ISA снова с 4-байтными инструкциями, без дополнительного режима Thumb. Но 64-битные требования повлияли на ISA, так что теперь у нас 3 набора инструкций ARM: режим ARM, режим Thumb (включая Thumb-2) и ARM64. Эти наборы инструкций частично пересекаются, но можно сказать, это скорее разные наборы, нежели вариации одного. Существует ещё много RISC ISA с инструкциями фиксированной 32-битной длины — это как минимум MIPS, PowerPC и Alpha AXP.[Источник 3]

Выполнение инструкций

Компьютерная программа представляет собой последовательность команд, которые выполняются процессором. В то время как простые процессоры выполняют инструкции один за другим, суперскалярные процессоры способны выполнять несколько команд одновременно.

Программа может содержать специальные инструкций, которые передают выполнение инструкции, не идущей по порядку вслед за предыдущей. Условные переходы принимаются (выполнение продолжается по другому адресу) или нет (выполнение продолжается на следующей инструкции) в зависимости от некоторых условий.

Абсолютный и позиционно-независимый код

Абсолютный код — программный код, пригодный для прямого выполнения процессором, то есть код, не требующий дополнительной обработки (например, разрешения ссылок между различными частями кода или привязки к адресам в памяти, обычно выполняемой загрузчиком программ). Примерами абсолютного кода являются исполняемые файлы в формате .COM и загрузчик ОС, располагаемый в MBR. Часто абсолютный код понимается в более узком смысле как позиционно-зависимый код (то есть код, привязанный к определённым адресам памяти).

Позиционно-независимый код — программа, которая может быть размещена в любой области памяти, так как все ссылки на ячейки памяти в ней относительные (например, относительно счётчика команд). Такую программу можно переместить в другую область памяти в любой момент, в отличие от перемещаемой программы, которая хотя и может быть загружена в любую область памяти, но после загрузки должна оставаться на том же месте.

Возможность создания позиционно-независимого кода зависит от архитектуры и системы команд целевой платформы. Например, если во всех инструкциях перехода в системе команд должны указываться абсолютные адреса, то код, требующий переходов, практически невозможно сделать позиционно-независимым. В архитектуре x86 непосредственная адресация в инструкциях работы с данными представлена только абсолютными адресами, но поскольку адреса данных считаются относительно сегментного регистра, который можно поменять в любой момент, это позволяет создавать позиционно-независимый код со своими ячейками памяти для данных. Кроме того, некоторые ограничения набора команд могут сниматься с помощью самомодифицирующегося кода или нетривиальных последовательностей инструкций.

Хранение в памяти

Гарвардская архитектура представляет собой компьютерную архитектуру с физически разделенным хранением сигнальных путей для инструкций и данных. На сегодняшний день, в большинстве процессоров реализованы отдельные сигнальные пути для повышения производительности. Модифицированная Гарвардская архитектура поддерживает такие задачи, как загрузка исполняемой программы из дисковой памяти в качестве данных, а затем её выполнение. Гарвардская архитектура контрастирует с архитектурой фон Неймана, где данные и код хранятся в памяти вместе, и считываются процессором, позволяя компьютеру выполнять команды.

С точки зрения процесса, кодовое пространство является частью его адресного пространства, в котором код сохраняется во время исполнения. В многозадачных системах оно включает в себя сегмент кода программы и, как правило, совместно используемые библиотеки. В многопоточной среде различные потоки одного процесса используют кодовое пространство и пространство данных совместно, что повышает скорость переключения потока.

Связь с языками программирования

Ассемблерные языки

Гораздо более читаемым представлением машинного языка называется язык ассемблера, использующий мнемонические коды для обозначения инструкций машинного кода, а не с помощью числовых значений. Например, на процессоре Zilog Z80, машинный код 00000101, который дает указание процессору декрементировать регистр процессора B, будет представлен на языке ассемблера как DEC B.

Связь с микрокодом

В некоторых компьютерных архитектурах, машинный код реализуется с помощью более фундаментального базового слоя программ, называемых микропрограммами, обеспечивающими общий интерфейс машинного языка для линейки различных моделей компьютеров с самыми различными базовыми потоками данных. Это делается для облегчения портирования программ на машинном языке между различными моделями. Примером такого использования являются компьютеры IBM System/360 и их наследники. Несмотря на то, что ширина потоков данных разнится от 8 до 64 бит и более, тем не менее они представляют общую архитектуру на уровне машинного языка по всей линейке.

Использование микрокода для реализации эмулятора позволяет компьютеру симулировать совершенно другую архитектуру. Семейство System / 360 использовало это для портирования программ с более ранних машин IBM на новые семейства компьютеров, например на IBM 1401/1440/1460.

Связь с байткодом

Машинный код, как правило, отличается от байт-кода (также известного как р-код), который либо выполняется интерпретатором, или сам компилируется в машинный код для более быстрого исполнения. Исключением является ситуация, когда процессор предназначен для использования конкретного байт-кода как машинного, например, как в случае с процессорами Java. Машинный и ассемблерный код иногда называют собственным (внутренним) кодом ЭВМ, когда ссылаются на платформо-зависимые части свойств или библиотек языка.[Источник 4]

Примеры

Пример MIPS 32-bit инструкции

Набор инструкций MIPS – пример машинного кода с инструкциями фиксированной длины – 32 бита. Тип инструкции содержится в поле op (поле операции) – первые 6 бит. Например типы инструкций перехода или немедленных операций полностью определяются этим полем. Инструкции регистров включают дополнительное поле funct, для определения конкретной операции. Все поля, использущиеся в данных типах инструкций:

   6      5     5     5     5      6 bits
[  op  |  rs |  rt |  rd |shamt| funct]  R-type
[  op  |  rs |  rt | address/immediate]  I-type
[  op  |        target address        ]  J-type

Rs,rt и rd – индикаторы задействования регистров, shamt – параметр сдвига,а поле address/immediate явно содержит операнд.

Пример: сложение значений в регистрах 1 и 2 и запись результата в регистр 6:


[  op  |  rs |  rt |  rd |shamt| funct]
    0     1     2     6     0     32     decimal
 000000 00001 00010 00110 00000 100000   binary

Пример: загрузка значения в регистр 8, взятое из ячейки памяти, находящейся на 68 ячеек дальше, чем адрес, находящийся в регистре 3:


[  op  |  rs |  rt | address/immediate]
   35     3     8           68           decimal
 100011 00011 01000 00000 00001 000100   binary

Пример: переход к адресу 1024:


[  op  |        target address        ]
    2                 1024               decimal
 000010 00000 00000 00000 10000 000000   binary


Пример для x86 (MS DOS) – “Hello, World!”

Программа «Hello, world!» для процессора архитектуры x86 (ОС MS-DOS, вывод при помощи BIOS прерывания int 10h) выглядит следующим образом (в шестнадцатеричном представлении):

BB 11 01 B9 0D 00 B4 0E 8A 07 43 CD 10 E2 F9 CD 20 48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21


Данная программа работает при её размещении по смещению 10016. Отдельные инструкции выделены цветом:

  • BB 11 01, B9 0D 00, B4 0E, 8A 07 — команды присвоения значений регистрам.
  • 43инкремент регистра BX.
  • CD 10, CD 20 — вызов программных прерываний 1016 и 2016.
  • E2 F9 — команда для организации цикла.
  • Малиновым показаны данные (строка «Hello, world!»).

Тот же код ассемблерными командами:

XXXX:0100     mov     bx, 0111h       ; поместить в bx смещение строки HW
XXXX:0103     mov     cx, 000Dh       ; поместить в cx длину строки HW
XXXX:0106     mov     ah, 0Eh         ; поместить в ah номер функции прерывания 10h
XXXX:0108     mov     al, [bx]        ; поместить в al значение ячейки памяти, адрес которой находится в bx
XXXX:010A     inc     bx              ; перейти к следующему байту строки (увеличить смещение на 1)
XXXX:010B     int     10h             ; вызов прерывания 10h
XXXX:010D     loop    0108            ; если cx≠0, то уменьшить cx на 1 и перейти по адресу 0108
XXXX:010F     int     20h             ; прерывание 20h: завершить программу
XXXX:0111 HW  db      'Hello, World!' ; строка, которую требуется напечатать

Список источников

  1. Compiler definition by The Linux Information Project (LINFO)[Электронный ресурс]. - Дата обращения: 05.03.2017. Режим Доступа:http://www.linfo.org/compiler.html
  2. Immediate Operand [Электронный ресурс]:Bradley Kjell - Дата обращения: 05.03.2017. Режим доступа: http://programmedlessons.org/AssemblyTutorial/Chapter-11/ass11_2.html
  3. Reverse Engineering для начинающих. [Электронный ресурс]: Денис Юричев. Дата обращения: 05.03.2017. Режим доступа: https://beginners.re/RE4B-RU.pdf
  4. Managed, Unmanaged, Native: What Kind of Code Is This? [Электронный ресурс] - Дата обращения 05.03.2017. Режим доступа:http://www.developer.com/net/cplus/article.php/2197621/Managed-Unmanaged-Native-What-Kind-of-Code-Is-This.htm