Гипервизор

Материал из Национальной библиотеки им. Н. Э. Баумана
Последнее изменение этой страницы: 10:06, 27 июня 2016.

Определение

Гипервизор (англ. Hypervisor) или Монитор виртуальных машин (в компьютерах) — программа или аппаратная схема, обеспечивающая или позволяющая одновременное, параллельное выполнение нескольких операционных систем на одном и том же хост-компьютере. Гипервизор также обеспечивает изоляцию операционных систем друг от друга, защиту и безопасность, разделение ресурсов между различными запущенными ОС и управление ресурсами. Гипервизор также может (но не обязан) предоставлять работающим под его управлением на одном хост-компьютере ОС средства связи и взаимодействия между собой (например, через обмен файлами или сетевые соединения) так, как если бы эти ОС выполнялись на разных физических компьютерах. Гипервизор сам по себе в некотором роде является минимальной операционной системой (микроядром или наноядром). Он предоставляет запущенным под его управлением операционным системам сервис виртуальной машины, виртуализируя или эмулируя реальное (физическое) аппаратное обеспечение конкретной машины. И управляет этими виртуальными машинами, выделением и освобождением ресурсов для них. Гипервизор позволяет независимое «включение», перезагрузку, «выключение» любой из виртуальных машин с той или иной ОС. При этом операционная система, работающая в виртуальной машине под управлением гипервизора, может, но не обязана «знать», что она выполняется в виртуальной машине, а не на реальном аппаратном обеспечении.

Термин

Термин гипервизор (hypervisor) зачастую используется в двух понятиях, которые следует различать. Первое, более широкое, включает все виды технологий поддержки исполнения виртуальных машин (ВМ). Более узкое один из вариантов таких решений, основанный на отсутствии хостовой ОС. Гипервизор создает абстракцию нижележащей аппаратной платформы, таким образом, чтобы она могла использоваться одной или несколькими виртуальными машинами (ВМ), при этом ВМ не знают, что совместно используют одну и ту же платформу. В данном контексте виртуальная машина – это просто контейнер для операционной системы и приложений. Интересное преимущество данного подхода состоит в том, что виртуальная машина изолируется от других виртуальных машин, запущенных на этом же гипервизоре, что позволяет иметь несколько операционных систем или несколько конфигураций одной операционной системы.

Обязанности

В обязанности гипервизора входит: изоляция операционных систем друг от друга, разделение ресурсов между операционными системами, управление ресурсами, обеспечение защиты и безопасности операционных систем. Гипервизор – предоставляет операционным системам, работающим под его управлением виртуализацию и эмуляцию реального аппаратного обеспечения, управляет этими виртуальным операционными системами и выделяет и освобождает ресурсы для них, так же предоставляет возможности независимого запуска, перезагрузки и останова каждой из них. Работа для операционной системы под управлением гипервизора ничем не отличается от работы на реальном аппаратном обеспечении.

Типы

Все гипервизоры, обеспечивающие работу виртуальных машин и приложений, делятся на два типа. Большинство современных гипервизоров относятся к Type 2, что подразумевает установку гипервизора в основную клиентскую операционную систему. Гипервизоры, которые относятся к Type 1, интегрируются с аппаратной составляющей ВС, а клиентская операционная система работает поверх этой аппаратуры и гипервизора. По мнению Тима Джонса в реализации технологий ВМ выделяются три основных подхода (рис. 1).

  • Гипервизор первого типа (автономный, тонкий, исполняемый на “голом железе” — Type 1, native, bare-metal) — программа, исполняемая непосредственно на аппаратном уровне компьютера и выполняющая функции эмуляции физического аппаратного обеспечения и управления аппаратными средствами и гостевыми ОС. То есть такой гипервизор сам по себе в некотором роде является минимальной операционной системой.
  • Гипервизор второго типа (хостовый, монитор виртуальных машин — hosted, Type-2, V) — специальный дополнительный программный слой, расположенный поверх основной хостовой ОС, который в основном выполняет функции управления гостевыми ОС, а эмуляцию и управление аппаратурой берет на себя хостовая ОС.
  • Гипервизор гибридный (Hybrid, Type-1+) — объединенный вариант первых двух, в котором функции управления аппаратными средствами выполняются тонким гипервизором и специальной депривилегированной сервисной ОС, работающей под управлением тонкого гипервизора. Обычно гипервизор управляет напрямую процессором и памятью компьютера, а через сервисную ОС гостевые ОС работают с остальными аппаратными компонентами.

автономный гипервизор (Тип 1) имеет свои встроенные драйверы устройств, модели драйверов и планировщик и поэтому не зависит от базовой ОС. Так как автономный гипервизор работает непосредственно в окружении усечённого ядра, то он более производителен, но проигрывает в производительности виртуализации на уровне ОС и паравиртуализации. Примерами таких технологий выступают: VMware ESX , Citrix, XenServer. Гипервизор на основе базовой ОС (Тип 2, V) представляет собой компонент, работающий в одном кольце с ядром основной ОС (кольцо 0). Гостевой код может выполняться прямо на физическом процессоре, но доступ к устройствам ввода-вывода компьютера из гостевой ОС осуществляется через второй компонент, обычный процесс основной ОС — монитор уровня пользователя. Примерами таких гипервизоров выступают: VirtualBox, VMware Workstation, QEMU, Parallels. Гибридный гипервизор (Тип 1+) состоит из двух частей: из тонкого гипервизора, контролирующего процессор и память, а также работающей под его управлением специальной сервисной ОС в кольце пониженного уровня. Через сервисную ОС гостевые ОС получают доступ к физическому оборудованию. Примерами данного вида гипервизоров выступают: Sun Logical Domains, Xen, Citrix XenServer, Microsoft Hyper- V.

Типы архитекруры на реальных примерах

VMware vSphere Hypervisor

Классический вариант полностью автономного гипервизора, который относится к категории архитектуры монолитного ядра. Он содержит всё необходимое для работы ВМ и по сути является автономной ОС, включающей в том числе и драйверы для работы с оборудованием. Именно на эти моменты как на архитектурные преимущества делает акцент VMware, подчеркивая, что такой подход обеспечивает наиболее полную изоляцию ВМ, а следовательно, и более высокую надежность системы в целом. В целом ее ESX Server состоит из собственно гипервизора, среды исполнения (ESXi) и сервисной консоли на базе ядра Linux, при этом ESXi может использоваться автономно, но в этом случае у него ограничены возможности управления системой. Критики данного варианта указывают на сложность решения задачи реализации собственной модели драйверов, доводка которой до нужного уровня является многолетней задачей. Отмечается также, что вся архитектура ESX - закрытая, проприетарная (на это делает акцент даже Microsoft).

Microsoft Hyper-V

Придерживается иного подхода, который называют архитектурой микроядра, т.е. разделения функций по разным модулям и уровням. В сущности данный подход вариант гипервизора смешанного типа (Тип 1+), когда сам гипервизор выполняет только функции управления памятью и процессором, а для взаимодействия с внешними устройствами и управления служит привилегированная родительская ВМ на базе ядра Windows (в случае Citrix — Linux).

По мнению разработчиков Microsoft, такой подход более эффективен при высокой вычислительной нагрузке, когда используется только “тонкий” гипервизор, который в случае Microsoft занимает всего порядка 100 Кб оперативной памяти.

Для ускорения же работы на уровне драйверов Microsoft использует два механизма взаимодействия прикладных BM с родительской. В одном случае применяется специальный внутренний интерфейс VMBus, который позволяет общаться ВМ между собой напрямую. Он доступен для ВМ, реализованных на базе Windows, а также Xen, но только для тех разработчиков, с кем у Microsoft есть соответствующий уровень сотрудничества. Для всех остальных ОС используется второй вариант полной эмуляции драйверов. Как свое преимущество Microsoft также подчеркивает наличие в ее Hyper-V проверенной модели драйверов, которая развивается в рамках Windows Server в целом на протяжении ряда лет.

Citrix XenServer

KVM

Qemu-KVM

Популярные на рынке (2015)

В настоящее время, существует несколько лидирующих систем виртуализации. Среди всех систем особо выделяется openVZ, популярность её использования обеспечивается высоким функционалом, большой степенью надежности и изоляции ресурсов и поддержкой «живой» миграции, отсутствующей у конкурентов. Применяя технологии виртуализации в совершенствовании и оптимизации информационной среды вуза в конфигурации OpenVZ (базовая), Hyper-V и Xen (вспомогательные), можно эффективно обеспечивать студентов и преподавателей круглосуточно функционирующими гостевыми машинами с возможностью доступа в Интернет, и осуществлять централизованный контроль над ресурсами локальной сети. Решением проблем оптимизации информационной инфраструктуры организации, связанных со сложностью, безопасностью, надёжностью и дороговизной компонентов информационной системы, может служить повсеместное внедрение технологий виртуализации. Основываясь на многолетнем опыте и потребностях ШГПИ, оптимальным явилось решение о внедрении в работу Вычислительного Центра, обслуживающего большинство локальных сетей вуза, системы виртуализации OpenVZ. Выбор системы виртуализации основывается на:

  • Возможностях передачи в индивидуальное пользование студентам и преподавателям вуза заранее подготовленных виртуальных машин, высокая скорость подготовки таких машин, минимальные усилия по вводу и выводу их из эксплуатации.
  • Наличие централизованного контроля за состоянием и содержимым виртуальных машин, возможность административного доступа к виртуальным машинам администратору хостовой системы.
  • Низкий уровень требований к мощности физического узла, высокая плотность размещения виртуальных машин, минимальный объем шаблонов и резервных копий виртуальных машин,
  • Быстрая миграция виртуальных машин с одного физического узла на другой.