Ассемблер

Материал из Национальной библиотеки им. Н. Э. Баумана
Последнее изменение этой страницы: 04:01, 10 июня 2017.

Ассе́мблер (от англ. assembler — сборщик) — транслятор исходного текста программы, написанной на языке ассемблера, в программу на машинном языке.

Как и сам язык, ассемблеры, как правило, специфичны для конкретной архитектуры, операционной системы и варианта синтаксиса языка. Вместе с тем существуют мультиплатформенные или вовсе универсальные (точнее, ограниченно-универсальные, потому что на языке низкого уровня нельзя написать аппаратно-независимые программы) ассемблеры, которые могут работать на разных платформах и операционных системах. Среди последних можно также выделить группу кросс-ассемблеров, способных собирать машинный код и исполняемые модули (файлы) для других архитектур и операционных систем.

Ассемблирование может быть не первым и не последним этапом на пути получения исполнимого модуля программы. Так, многие компиляторы с языков программирования высокого уровня выдают результат в виде программы на языке ассемблера, которую в дальнейшем обрабатывает ассемблер. Также результатом ассемблирования может быть не исполняемый, а объектный модуль, содержащий разрозненные блоки машинного кода и данных программы, из которого (или из нескольких объектных модулей) в дальнейшем с помощью редактора связей может быть получен исполнимый файл.

История

Когда компьютеры были большими как динозавры, а объем мозгов у них был примерно такой же, как у этих рептилий, и даже меньше, единственным способом программирования было забивание программы в память ЭВМ непосредственно в цифровом виде (иногда даже с помощью щелканья переключателями). Затем человек начал совершенствовать эту технику, постепенно перекладывая труд по генерации кода на плечи самой машины. Ибо заставлять высококвалифицированного человека перебирать биты и помнить кучу шестнадцатеричных (а то и восьмеричных) кодов обходится весьма дорого, как в деньгах, так и во времени.

Простейший транслятор (ассемблер первого поколения) позволял фактически просто писать машинные команды на «человеческом» языке, что позволило программистам немного расслабиться. Затем появились языки высокого уровня и компиляторы (более интеллектуальные генераторы кода с более понятного человеку языка) и интерпретаторы (исполнители человекописанной программы на лету). Которые совершенствовались, совершенствовались, совершенствовались, и досовершенствовались до «программирования мышкой», а компиляторы научились генерировать код, которому по скорости написанный человеком начал сливать. Речь идёт только о последнем эшелоне оптимизации — оптимальном генерировании машинных операций. А в наше время узкое место и так давно уже не в нём, а в бездарной архитектуре комплексов ПО в целом, из-за чего машина занимается переливанием из пустого в порожнее — но с предельно оптимизированной скоростью струи, да — это в первую очередь. А еще очень негативно на скорости сказывается незнание быдлокодерами основ теории алгоритмов и структур данных. Второй пункт в последнее время нивелируется невъебенно навороченными стандартными (или специальными) библиотеками языков и сред разработки, что в конечном итоге способствует терминальному отупению тех же быдлокодеров и возвратом к пункту 1 этой ссылки.

В целом история языков программирования протекает в направлении от программирования на языке компьютера до манипуляции абстракциями вроде Послать.Лесом(всех(кому не нравится эта статья)) Ну или (послать (лесом (всех (кому-не-нравится "эта-статья")))) или
послать :: Куда -> [Люди] -> String
послать куда = map (\x -> (show x) ++ ", иди " ++ (show куда))
кванторВкуса :: (ОбъектЧувства a) => ТипКвантора -> ТипОтношения -> a -> [Люди]

посылаем :: String
посылаем =  let быдло = кванторВкуса Все НеНравится этаСтатья
            in послать быдло

На языке ассемблера этот код занял бы более 9000 строк. И потребовал бы долгой и кропотливой работы по своему созданию.

Область применения

  • Популярен для допиливания зацикливаемых кусков программы… в роли напильника. Перепиливание критических участков кода может принести PROFIT, а может и не принести. В любом случае, заниматься таким перепиливанием стоит только тогда, когда у вас на руках уже полностью работающий алгоритм, который можно было бы ускорить, а не наоборот.
  • Для использования в софте новых команд, доступных в новых процессорах. Компилятор хоть и оптимизирует код высокого уровня при компиляции, но… практически никогда не способен генерировать инструкции из расширенных наборов команд типа AVX, СTV, XOP и т. п. Потому что команды в процессоры добавляют быстрее, чем в компиляторах появляется логика для генерации этих команд.
  • Используется для написания кода, создание которого невозможно (или затруднено) на языках высокого уровня, например, получение дампа памяти/стека. Даже когда аналог на языке высокого уровня возможен, профит от языка ассемблера может быть значительным в разы.
  • В вузах изучается для вливания в МНУ студентов познаний об устройстве и работе компьютера.
  • Является единственным языком программирования для создания достойных инфекторов — Cih, Sality, Sinowal.
  • Оптимизация затратных математических алгоритмов.
  • Программирование под устаревшие платформы (NES, например), которым мешает использовать «сбалансированный» Си.

Ассемблирование и компилирование

Процесс трансляции программы на языке ассемблера в объектный код принято называть ассемблированием. В отличие от компилирования, ассемблирование — более или менее однозначный и обратимый процесс. В языке ассемблера каждой мнемонике соответствует одна машинная инструкция, в то время как в языках программирования высокого уровня за каждым выражением может скрываться большое количество различных инструкций. В принципе, это деление достаточно условно, поэтому иногда трансляцию ассемблерных программ также называют компиляцией.

Дизассемблер

Дизассе́мблер — транслятор, преобразующий машинный код, объектный файл или библиотечные модули в текст программы на языке ассемблера.

По режиму работы с пользователем делятся на

  • Автоматические
  • Интерактивные

Архитектуры

Под каждую архитектуру процессора и под каждую ОС или семейство ОС существует свой Ассемблер. Существуют также так называемые «кросс-ассемблеры», позволяющие на машинах с одной архитектурой (или в среде одной ОС) ассемблировать программы для другой целевой архитектуры или другой ОС, и получать исполняемый код в формате, пригодном к исполнению на целевой архитектуре или в среде целевой ОС.

  • Ассемблеры для DOS: TASM,MASM.
  • Ассемблеры для Windows: TASM 5+,MASM,MASM32,FASM(для настоящих "ценителей" языка.
  • Ассемблеры для Linux:gas (GNU Assembler),
  • Переносимые ассемблеры:Также существует открытый проект ассемблера, версии которого доступны под различные операционные системы, и который позволяет получать объектные файлы для этих систем. Называется этот ассемблер NASM (Netwide Assembler).YASM,FASM.

Язык ассемблера

Assembler — язык программирования низкого уровня, представляющий собой формат записи машинных команд, удобный для восприятия человеком.

Команды языка ассемблера один в один соответствуют командам процессора и, фактически, представляют собой удобную символьную форму записи (мнемокод) команд и их аргументов. Также язык ассемблера обеспечивает базовые программные абстракции: связывание частей программы и данных через метки с символьными именами и директивы.

Директивы ассемблера позволяют включать в программу блоки данных (описанные явно или считанные из файла); повторить определённый фрагмент указанное число раз; компилировать фрагмент по условию; задавать адрес исполнения фрагмента, менять значения меток в процессе компиляции; использовать макроопределения с параметрами и др.

Каждая модель процессора, в принципе, имеет свой набор команд и соответствующий ему язык (или диалект) ассемблера.

Достоинства и недостатки

  • минимальное количество избыточного кода (использование меньшего количества команд и обращений в память). Как следствие — большая скорость и меньший размер программы
  • большие объемы кода, большое число дополнительных мелких задач
  • плохая читабельность кода, трудность поддержки (отладка, добавление возможностей)
  • меньшее количество доступных библиотек, их малая совместимость
  • максимальная «подгонка» для нужной платформы (использование специальных инструкций, технических особенностей «железа»)
  • непереносимость на другие платформы (кроме двоично совместимых).
  • возможность написания самомодифицирующегося кода (т.е. метапрограммирования, причем без необходимости программного интерпретатора)
  • трудность реализации парадигм программирования и любых других сколько-нибудь сложных конвенций, сложность совместной разработки

Синтаксис

Общепринятого стандарта для синтаксиса языков ассемблера не существует. Однако, существуют стандарты де-факто — традиционные подходы, которых придерживаются большинство разработчиков языков ассемблера. Основными такими стандартами являются Intel-синтаксис и AT&T-синтаксис.

Общий формат записи инструкций одинаков для обоих стандартов:

`[метка:] опкод [операнды] [;комментарий]`

Опкод — непосредственно мнемоника инструкции процессору. К ней могут быть добавлены префиксы (повторения, изменения типа адресации и пр.). В качестве операндов могут выступать константы, названия регистров, адреса в оперативной памяти и пр.. Различия между стандартами Intel и AT&T касаются, в основном, порядка перечисления операндов и их синтаксиса при различных методах адресации.

Кроме инструкций, программа может содержать директивы: команды, не переводящиеся непосредственно в машинные инструкции, а управляющие работой компилятора. Набор и синтаксис их значительно разнятся и зависят не от аппаратной платформы, а от используемого компилятора (порождая диалекты языков в пределах одного семейства архитектур). В качестве набора директив можно выделить:

  • определение данных (констант и переменных)
  • управление организацией программы в памяти и параметрами выходного файла
  • задание режима работы компилятора
  • всевозможные абстракции (т.е. элементы языков высокого уровня) — от оформления процедур и функций (для упрощения реализации парадигмы процедурного программирования) до условных конструкций и циклов (для парадигмы структурного программирования)
  • макросы

Литература