Многопоточность

Материал из Национальной библиотеки им. Н. Э. Баумана
Последнее изменение этой страницы: 13:54, 27 мая 2017.

В компьютерной архитектуре Многопоточность - способность центрального процессора (CPU) или одного ядра в многоядерном процессоре одновременно выполнять несколько процессов или потоков, соответствующим образом поддерживаемых операционной системой. Этот подход отличается от многопроцессорности, так как многопоточность процессов и потоков совместно использует ресурсы одного или нескольких ядер: вычислительных блоков, кэш-памяти ЦПУ или буфера перевода с преобразованием (TLB).


В тех случаях, когда многопроцессорные системы включают в себя несколько полных блоков обработки, многопоточность направлена на максимизацию использования ресурсов одного ядра, используя параллелизм на уровне потоков, а также на уровне инструкций. Поскольку эти два метода являются взаимодополняющими, их иногда объединяют в системах с несколькими многопоточными ЦП и в ЦП с несколькими многопоточными ядрами.

Описание

Многопоточная парадигма стала более популярной с конца 1990-х годов, поскольку усилия по дальнейшему использованию параллелизма на уровне инструкций застопорились. Смысл многопоточности - квазимногозадачность на уровне одного исполняемого процесса. Значит, все потоки процесса помимо общего адресного пространства имеют и общие дескрипторы файлов. Выполняющийся процесс имеет как минимум один (главный) поток.

Многопоточность (как доктрину программирования) не следует путать ни с многозадачностью, ни с многопроцессорностью, несмотря на то, что операционные системы, реализующие многозадачность, как правило, реализуют и многопоточность.

Достоинства
  • облегчение программы посредством использования общего адресного пространства.
  • меньшие затраты на создание потока в сравнении с процессами.
  • повышение производительности процесса за счёт распараллеливания процессорных вычислений.
  • если поток часто теряет кэш, другие потоки могут продолжать использовать неиспользованные вычислительные ресурсы.
Недостатки
  • несколько потоков могут вмешиваться друг в друга при совместном использовании аппаратных ресурсов
  • с программной точки зрения аппаратная поддержка многопоточности более трудоемка для программного обеспечения
  • проблема планирования потоков
  • специфика использования. Вручную настроенные программы на ассемблере, использующие расширения MMX или AltiVec и выполняющие предварительные выборки данных, не страдают от потерь кэша или неиспользуемых вычислительных ресурсов. Таким образом, такие программы не выигрывают от аппаратной многопоточности и действительно могут видеть ухудшенную производительность из-за конкуренции за общие ресурсы.[Источник 1]

Аппаратная реализация

На обычном процессоре управление потоками осуществляется операционной системой. Поток исполняется до тех пор, пока не произойдёт аппаратное прерывание, системный вызов или пока не истечёт отведённое для него время. После этого процессор переключается на код операционной системы, который сохраняет состояние потока (его контекст) или переключается на состояние другого потока, которому тоже выделяется время . При такой многопоточности большое количество тактов процессора тратится на код операционной системы, переключающий контексты. Однако, если поддержку потоков реализовать аппаратно, то процессор сам сможет переключаться между потоками или даже выполнять несколько потоков одновременно за каждый такт.

Различают две формы аппаратной реализации многопоточности:

  • Временная многопоточность (англ. Temporal multithreading)
  • Одновременная многопоточность (англ. Simultaneous multithreading)

Типы реализации потоков

  • Поток в пространстве пользователя. Каждый процесс имеет таблицу потоков, подобную таблице процессов ядра. Недостатки:
  1. отсутствие прерывания по таймеру внутри одного процесса
  2. при использовании блокирующего системного запроса для процесса происходит блокировка всех его потоков.
  3. сложность реализации
  • Поток в пространстве ядра. Наряду с таблицей процессов в пространстве ядра имеется таблица потоков.
  • «Волокна» (англ. fibers). Несколько потоков режима пользователя, исполняющихся в одном потоке режима ядра. По причине того, что поток пространства ядра потребляет заметные ресурсы, в первую очередь физическую память и диапазон адресов режима ядра для стека режима ядра, было введено понятие «волокна» — облегчённого потока, выполняемого исключительно в режиме пользователя. У каждого потока может быть несколько «волокон».

Взаимодействие потоков

В многопоточной среде часто возникают проблемы, связанные с использованием параллельно исполняемыми потоками одних и тех же данных или устройств. Для решения подобных проблем используются такие методы взаимодействия потоков, как взаимоисключения (мьютексы), семафоры, критические секции и события.[Источник 2]

  • Взаимоисключения (mutex, мьютекс) — это объект синхронизации, который устанавливается в особое сигнальное состояние, когда не занят каким-либо потоком. Только один поток владеет этим объектом в любой момент времени, отсюда и название таких объектов (от английского mutually exclusive access — взаимно исключающий доступ) — одновременный доступ к общему ресурсу исключается. После всех необходимых действий мьютекс освобождается, предоставляя другим потокам доступ к общему ресурсу. Объект может поддерживать рекурсивный захват второй раз тем же потоком, увеличивая счетчик, не блокируя поток, и требуя потом многократного освобождения. Такова, например, критическая секция в Win32. Тем не менее, есть и такие реализации, которые не поддерживают такое и приводят к взаимной блокировке потока при попытке рекурсивного захвата. Это FAST_MUTEX в ядре Windows.
  • Семафоры представляют собой доступные ресурсы, которые могут быть приобретены несколькими потоками в одно и то же время, пока пул ресурсов не опустеет. Тогда дополнительные потоки должны ждать, пока требуемое количество ресурсов не будет снова доступно. Семафоры очень эффективны, поскольку они позволяют одновременный доступ к ресурсам.
  • События. Объект, хранящий в себе 1 бит информации «просигнализирован или нет», над которым определены операции «просигнализировать», «сбросить в непросигнализированное состояние» и «ожидать». Ожидание на просигнализированном событии есть отсутствие операции с немедленным продолжением исполнения потока. Ожидание на непросигнализированном событии приводит к приостановке исполнения потока до тех пор, пока другой поток (или же вторая фаза обработчика прерывания в ядре ОС) не просигнализирует событие. Возможно ожидание нескольких событий в режимах «любого» или «всех». Возможно также создание события, автоматически сбрасываемого в непросигнализированное состояние после пробуждения первого же — и единственного — ожидающего потока (такой объект используется как основа для реализации объекта «критическая секция»). Активно используются в MS Windows, как в режиме пользователя, так и в режиме ядра. Аналогичный объект имеется и в ядре Linux под названием kwait_queue.
  • Критические секции обеспечивают синхронизацию подобно мьютексам, за исключением того, что объекты, представляющие критические секции, доступны в пределах одного процесса. События, мьютексы и семафоры также можно использовать в однопроцессном приложении, однако реализации критических секций в некоторых ОС (например, Windows NT) обеспечивают более быстрый и более эффективный механизм взаимно-исключающей синхронизации — операции «получить» и «освободить» на критической секции оптимизированы для случая единственного потока (отсутствия конкуренции) с целью избежать любых ведущих в ядро ОС системных вызовов. Подобно мьютексам объект, представляющий критическую секцию, может использоваться только одним потоком в данный момент времени, что делает их крайне полезными при разграничении доступа к общим ресурсам.
  • Условные переменные (condvars). Сходны с событиями, но не являются объектами, занимающими память — используется только адрес переменной, понятие «содержимое переменной» не существует, в качестве условной переменной может использоваться адрес произвольного объекта. В отличие от событий, установка условной переменной в просигнализированное состояние не влечет за собой никаких последствий в случае, если на данный момент нет потоков, ожидающих на переменной. Установка события в аналогичном случае влечет за собой запоминание состояния «просигнализировано» внутри самого события, после чего следующие потоки, желающие ожидать события, продолжают исполнение немедленно без остановки. Для полноценного использования такого объекта необходима также операция «освободить mutex и ожидать условную переменную атомарно». Активно используются в UNIX-подобных ОС. Дискуссии о преимуществах и недостатках событий и условных переменных являются заметной частью дискуссий о преимуществах и недостатках Windows и UNIX.
  • Порт завершения ввода-вывода (IO completion port, IOCP). Реализованный в ядре ОС и доступный через системные вызовы объект «очередь» с операциями «поместить структуру в хвост очереди» и «взять следующую структуру с головы очереди» — последний вызов приостанавливает исполнение потока в случае, если очередь пуста, и до тех пор, пока другой поток не осуществит вызов «поместить». Самой важной особенностью IOCP является то, что структуры в него могут помещаться не только явным системным вызовом из режима пользователя, но и неявно внутри ядра ОС как результат завершения асинхронной операции ввода-вывода на одном из дескрипторов файлов. Для достижения такого эффекта необходимо использовать системный вызов «связать дескриптор файла с IOCP». В этом случае помещенная в очередь структура содержит в себе код ошибки операции ввода-вывода, а также, для случая успеха этой операции — число реально введенных или выведенных байт. Реализация порта завершения также ограничивает число потоков, исполняющихся на одном процессоре/ядре после получения структуры из очереди. Объект специфичен для MS Windows, и позволяет обработку входящих запросов соединения и порций данных в серверном программном обеспечении в архитектуре, где число потоков может быть меньше числа клиентов (нет требования создавать отдельный поток с расходами ресурсов на него для каждого нового клиента).
  • ERESOURCE. Мьютекс, поддерживающий рекурсивный захват, с семантикой разделяемого или эксклюзивного захвата. Семантика: объект может быть либо свободен, либо захвачен произвольным числом потоков разделяемым образом, либо захвачен всего одним потоком эксклюзивным образом. Любые попытки осуществить захваты, нарушающее это правило, приводят к блокировке потока до тех пор, пока объект не освободится так, чтобы сделать захват разрешенным. Также есть операции вида TryToAcquire — никогда не блокирует поток, либо захватывает, либо (если нужна блокировка) возвращает FALSE, ничего не делая. Используется в ядре Windows, особенно в файловых системах — так, например, любому кем-то открытому дисковому файлу соответствует структура FCB, в которой есть 2 таких объекта для синхронизации доступа к размеру файла. Один из них — paging IO resource — захватывается эксклюзивно только в пути обрезания файла, и гарантирует, что в момент обрезания на файле нет активного ввода-вывода от кэша и от отображения в память.
  • Rundown protection. Полудокументированный (вызовы присутствуют в файлах-заголовках, но отсутствуют в документации) объект в ядре Windows. Счетчик с операциями «увеличить», «уменьшить» и «ждать». Ожидание блокирует поток до тех пор, пока операции уменьшения не уменьшат счетчик до нуля. Кроме того, операция увеличения может отказать, и наличие активного в данный момент времени ожидания заставляет отказывать все операции увеличения.

Особенности реализации

Важнейшей областью исследований является планировщик потоков, который должен быстро выбрать из списка готовых к запуску потоков для выполнения следующего, а также поддерживать готовые к запуску и остановленные списки потоков. Важной подтемой являются различные схемы приоритетов потоков, которые могут использоваться планировщиком. Планировщик потоков может быть полностью реализован в программном обеспечении, полностью на аппаратном уровне или в виде аппаратно-программной комбинации.

Еще одной областью исследований является то, какие типы событий должны вызывать переключение потоков: потери в кэш-памяти, межпотоковая связь, завершение DMA и т.д.[Источник 3]

Если многопоточная схема копирует все видимое программное обеспечение, включая привилегированные регистры управления и TLB, то она позволяет создавать виртуальные машины для каждого потока. Это позволяет каждому потоку запускать свою собственную операционную систему на одном процессоре. С другой стороны, если сохраняется только состояние пользовательского режима, требуется меньшее количество аппаратного обеспечения, что позволило бы одновременно активизировать несколько потоков для одной и той же области кристалла.

Критика терминологии

Термин «поток» связан с переводами иностранной технической литературы, выполненными в 1970-х годах издательством «Мир». В настоящее время в «академических кругах» (то есть в учебниках, методических пособиях, курсах вузов, диссертациях и пр.) он считается эталонным. Это противоречит его же переводу «нить» в общеязыковом контексте, а также создаёт путаницу с термином Data stream.

Потоки называют также потоками выполнения (от англ. thread of execution); иногда называют «нитями» (буквальный перевод англ. thread) или неформально «тредами».

Источники

  1. Введение в технологии параллельного программирования // INTEL: сайт. URL: https://software.intel.com/ru-ru/articles/writing-parallel-programs-a-multi-language-tutorial-introduction/ (дата обращения: 08.05.2017)
  2. Передача сокетов между процессами // Codenet сайт. URL: http://www.codenet.ru/progr/cpp/threads.php (дата обращения: 08.05.2017)
  3. What makes parallel programming hard? // Futurechips сайт. URL: http://www.futurechips.org/tips-for-power-coders/parallel-programming.html (дата обращения: 08.05.2017)