Методы и средства сокрытия данных путем скремблирования

Материал из Национальной библиотеки им. Н. Э. Баумана
Последнее изменение этой страницы: 22:46, 17 ноября 2016.

Введение

В речевых системах связи известно два основных метода сокрытия сигналов, различающихся по способу передачи по каналам связи: аналоговое скремблирование и дискретизация сообщений с последующим шифрованием. Под скремблированием понимается изменение характеристик речевого сигнала, таким образом, что полученный модулированный сигнал, обладая свойствами неразборчивости и неузнаваемости, занимает ту же полосу частот, что и исходный сигнал.
Каждый из этих методов имеет свои достоинства и недостатки.

Так, для аналоговых скремблеров характерно присутствие при передаче в канале связи фрагментов исходного открытого речевого сообщения, преобразованного в частотной и (или) временной области. Это означает, что злоумышленники могут попытаться перехватить и проанализировать передаваемую информацию на уровне звуковых сигналов. Поэтому ранее считалось, что, несмотря на высокое качество и разборчивость восстанавливаемой речи, аналоговые скремблеры могут обеспечивать лишь низкую или среднюю, по сравнению с цифровыми системами, степень закрытия. Однако новейшие алгоритмы аналогового скремблирования способны обеспечить не только средний, но очень высокий уровень закрытия.
Аналоговые скремблеры подразделяются на:

  • речевые скремблеры простейших типов на базе временных и (или) частотных перестановок речевого сигнала;
  • комбинированные речевые скремблеры на основе частотно-временных перестановок отрезков речи, представленных дискретными отсчетами, с применением цифровой обработки сигналов.


Альтернативным аналоговому скремблированию речи является шифрование речевых сигналов, преобразованных в цифровую форму, перед их передачей. Этот метод обеспечивает более высокий уровень закрытия по сравнению с описанными выше аналоговыми методами. В основе устройств, работающих по такому принципу, лежит представление речевого сигнала в виде цифровой последовательности, закрываемой по одному из криптографических алгоритмов. Передача данных, представляющих дискретизированные отсчеты речевого сигнала или его параметров, по телефонным сетям, как и в случае устройств шифрования алфавитно-цифровой и графической информации, осуществляется через устройства, называемые модемами.
Основной целью при разработке устройств цифрового закрытия речи является сохранение тех ее характеристик, которые наиболее важны для восприятия слушателем. Одним из путей является сохранение формы речевого сигнала. Это направление применяется в широкополосных цифровых системах закрытия речи. Однако более эффективно использовать свойства избыточности информации, содержащейся в человеческой речи. Это направление разрабатывается в узкополосных цифровых системах закрытия речи, которые рассматроиваются далее.

Ширину спектра речевого сигнала можно считать приблизительно равной 3,3 кГц, а для достижения хорошего качества восприятия необходимо соотношение сигнал/шум примерно 30 дБ. Тогда, согласно теории Шеннона, требуемая скорость передачи дискретизированной речи будет соответствовать величине 33 кбит/с.
С другой стороны, речевой сигнал представляет собой последовательность фонем, передающих информацию. В английском языке, например, около 40 фонем, в немецком — около 70 и т.д. Таким образом, для представления фонетического алфавита требуется примерно 6-7 бит. Максимальная скорость произношения не превышает 10 фонем в секунду. Следовательно, минимальная скорость передачи основной технической информации речи — не ниже 60-70 бит/с. Особенности речевых сигналов рассмотрены далее.

Сохранение формы сигнала требует высокой скорости передачи и, соответственно, использования широкополосных каналов связи. Так при импульсно-кодовой модуляции(ИКМ), используемой в большинстве телефонных сетей, необходима скорость передачи, равная 64 кбит/с. В случае применения адаптивной дифференциальной ИКМ скорость понижается до 32 кбит/с и ниже. Для узкополосных каналов, не обеспечивающих такие скорости передачи, требуются устройства, снижающие избыточность речи до ее передачи. Снижение информационной избыточности речи достигается параметризацией речевого сигнала, при которой сохраняются существенные для восприятия характеристики речи.

Таким образом, правильное применение методов цифровой передачи речи с высокой информационной эффективностью, является крайне важным направлением разработки устройств цифрового закрытия речевых сигналов. В таких системах устройство кодирования речи (вокодер), анализируя форму речевого сигнала, производит оценку параметров переменных компонент модели генерации речи и передает эти параметры в цифровой форме по каналу связи на синтезатор, где согласно этой модели по принятым параметрам синтезируется речевое сообщение. На малых интервалах времени (до 30мс) параметры сигнала могут рассматриваться, как постоянные. Чем короче интервал анализа, тем точнее можно представить динамику речи, но при этом должна быть выше скорость передачи данных. В большинстве случаев на практике используются 20-миллисекундные интервалы, а скорость передачи достигает 2400 бит/с.

Наиболее распространенными типами вокодеров являются полосные и с линейным предсказанием. Целью любого вокодера является передача параметров, характеризующих речь и имеющих низкую информационную скорость. Полосный вокодер достигает эту цель путем передачи амплитуды нескольких частотных полосных речевого спектра. Каждый полосовой фильтр такого вокодера возбуждается при попадании энергии речевого сигнала в его полосу пропускания. Так как спектр речевого сигнала изменяется относительно медленно, набор амплитуд выходных сигналов фильтров образует пригодную для вокодера основу. В синтезаторе параметры амплитуды каждого канала управляют коэффициентами усиления фильтра, характеристики которого подобны характеристикам фильтра анализатора. Таким образом, структура полосового вокодера базируется на двух блоках фильтров — для анализа и для синтеза. Увеличение количества каналов улучшает разборчивость, но при этом требуется большая скорость передачи. Компромиссным решением обычно становится выбор 16-20 каналов при скорости передачи данных около 2400 бит/с. Более подробно эти вопросы рассматриваются далее.

Полосовые фильтры в цифровом исполнении строятся на базе аналоговых фильтров Баттерворта, Чебышева, эллиптических и др. Каждый 20-миллисекундный отрезок времени кодируется 48 битами, из них 6 бит отводится на информацию об основном тоне, один бит на информацию “тон–шум”, характеризующую наличие или отсутствие вокализованного участка речевого сигнала, остальные 41 бит описывают значения амплитуд сигналов на выходе полосовых фильтров.

Далее рассмотрены различные модификации полосного вокодера, приспособленные для каналов с ограниченной полосой пропускания. При отсутствии жестких требований на качество синтезированной речи удается снизить количество бит передаваемой информации с 48 до 36 на каждые 20 мс, что обеспечивает снижение скорости до 1200 бит/с. Это возможно в случае передачи каждого второго кадра речевого сигнала и дополнительной информации о синтезе пропущенного кадра. Потери в качестве синтезированной речи от таких процедур не слишком велики, достоинством же является снижение скорости передачи сигналов. Наибольшее распространение среди систем цифрового кодирования речи с последующим шифрованием получили системы, основным узлом которых являются вокодеры с линейным предсказанием речи (ЛПР).
Математическое представление модели цифрового фильтра, используемого в вокодере с линейным предсказанием, имеет вид кусочно-линейной аппроксимацией процесса формирования речи с некоторыми упрощениями: каждый текущий отсчет речевого сигнала является линейной функцией P предыдущих отсчетов. Несмотря на несовершенство такой модели, ее параметры обеспечивают приемлемое представление речевого сигнала. В вокодере с линейным представлением анализатор осуществляет минимизацию ошибки предсказания, представляющего собой разность текущего отсчета речевого сигнала и средневзвешенной суммы предыдущих отсчетов. Существует несколько методов минимизации ошибки. Общим для всех является то, что при оптимальной величине коэффициентов предсказания спектр сигнала ошибки приближается к белому шуму и соседние значения ошибки имеют минимальную коррекцию. Известные методы делятся на две категории: последовательные и блочные, которые получили наибольшее распространение.

В вокодере с линейным предсказанием речевая информация передается тремя параметрами: амплитудой, решением “тон/шум” и периодом основного тока для вокализованных звуков. Период анализируемого отрезка речевого сигнала составляет 22,5 мс, что соответствует 180 отсчетам при частоте дискретизации 8 кГц. Кодирование в этом случае осуществляется 54 битами, что соответствует скорости передачи 2400 бит/с. При этом 41 бит отводится на кодирование десяти коэффициентов предсказания, 5 — на кодирование величины амплитуды, 7 — на передачу периода основного тона и 1 бит определяет решение “тон/шум”. При осуществлении подобного кодирования предполагается, что все параметры независимы, однако в естественной речи параметры коррелированны и возможно значительное снижение минимально допустимой скорости передачи данных без потери качества, если правило кодирования оптимизировать с учетом зависимости всех параметров. Такой подход известен под названием векторного кодирования. Его применение к вокодеру с линейным предсказанием позволяет снизить скорость передачи данных до 800 бит/с и менее, с очень малой потерей качеств.

Основные методы и типы систем сокрытия речевых сообщений

Человеческая речь может быть определена как модуляция сигнала акустического носителя, который вырабатывается в человеческой ротовой и носовой полостях. осредством этого генерируется основной звуковой элемент речи - фонема, а сумма фонем составляет вместе новое, более сложное образование – голосовой сигнал, имеющий спектральные, временные и амплитудные характеристики (свои для каждого сигнала).
Главной целью при разработке систем передачи речи является сохранение тех ее характеристик, которые наиболее важны для восприятия слушателем. Безопасность связи при передаче речевых сообщений основывается на использовании большого количества различных методов сокрытия сообщений, меняющих характеристики речи таким образом, что она становится неразборчивой и неузнаваемой для подслушивающего лица, перехватившего закрытое речевое сообщение.
Типичный спектр речевого сигнала показан на рис 1.

Рис. 1. Типичный спектр речевого сигнала

Частотные составляющие в диапазонах 3-4 кГц и менее 100 Гц быстро убывают. Таким образом, очень высокие частотные компоненты имеют существенно меньший вклад в сигнал, чем частоты в диапазоне 500-3000 Гц.

Если ограничиться частотами, не превышающими 3 кГц, и использовать высокочувствительный анализатор, то спектр, производимый некоторыми звуками, имеет вид зубчатой кривой приблизительно следующего вида (см. рис.2).

Рис. 2. Типичный спектр речевого сигнала с частотами, не превышающими 3 кГц

Мы видим несколько пиков графика, называемых формантами. Изменение этих частотных компонент во времени можно изобразить на трехмерном графике (при добавлении третьей координаты — времени).

Слуховое восприятие речевого сигнала более богато, чем восприятие текста, опирается основное текстовое, так и дополнительное в виде ударений и интонаций. Элементарными единицами речи являются элементарные звуки — фонемы, а смысловыми единицами — звучащие слоги, слова и фразы. Для каждого языка имеется свой набор базовых фонем. Например, в русском и английском языках имеется около 40 базовых фонем.

Множество фонем разбивается на три класса. Гласные образуют одно семейство, согласные и некоторые другие фонетические звуки (для английского языка — это, например, звуки ch, sh) образуют два класса, называемые взрывными звуками и фрикативными звуками. Гласные производятся движением голосовых связок под воздействием потоков воздуха. Проходя через гортань, они превращаются в серию вибраций. Затем воздушный поток проходит через некоторое число резонаторов, главными из которых являются нос, рот и горло, превращаясь в воспринимаемые человеческим ухом фонемы. Возникающие звуки зависят от формы и размеров этих резонаторов, но в значительной степени они характеризуются низкочастотными составляющими.

Гласные звуки производятся в течение длительного времени. Как правило, требуется около 100 мс для достижения его пиковой амплитуды. Взрывные звуки производятся путем «перекрытия» воздушного потока с последующим его выпусканием с взрывным эффектом. Блокирование воздушного потока может осуществляться различными способами — языком, нёбом или губами. Например, звук «п» произносится при блокировании воздушного потока губами. Взрывные звуки характеризуются их высокочастотными составляющими. До 90 % их пиков амплитуды имеют длительность, не превышающую 5 мсек. Фрикативные звуки производятся частичным перекрытием воздушного потока, что дает звук, похожий на «белый шум». Этот звук затем фильтруется резонаторами голосового тракта. Фрикативный звук обычно богат пиками амплитуды длительностью 20-50 мс и сконцентрирован по частоте от 1 до 3 кГц. Пример фрикатива — звук «ссс…»

Другой важной характеристикой человеческой речи является частота основного тона. Это — частота вибраций голосовых связок. Среднее значение этой частоты колеблется у разных людей, и у каждого говорящего имеется отклонение и пределах октавы выше или ниже этой центральной частоты. Обычно у мужчины частота основного тона колеблется около 130 Гц, у женщины она выше.

Речевые сигналы не только передают сообщения, но и дают сведения о голосовых характеристиках говорящего, что позволяет идентифицировать его по голосу. Можно использовать высоту, форманты, временную диаграмму и другие характеристики речевого сигнала, чтобы попытаться сформировать сигнал, схожий с оригиналом. Это воспроизведение может быть в некоторой степени неестественным и некоторые индивидуальные характеристики говорящего будут утеряны. Такие принципы репродукции лежат в основе вокодера, о котором будет сказано далее.

Выбор методов закрытия зависит от вида конкретного применения и технических характеристик канала передачи. Как отмечалось во введении, в речевых системах связи известны два основных метода закрытия речевых сигналов, разделяющихся по способу передачи по каналам связи: аналоговое скремблирование и дискретизация речи с последующим шифрованием (цифровое скремблирование). Под скремблированием понимают изменение характеристик речевого сигнала таким образом, чтобы полученный сигнал, становился неразборчивым и неузнаваемым, занимая ту же полосу спектра, что и исходный.

При использование скремблера обеспечивается защита переговоров от любых средств съема информации.

Каждый из этих двух методов имеет свои достоинства и недостатки. Так, например, в первых двух системах, представленных на рис. 3, в канале связи при передаче присутствуют кусочки исходного, открытого речевого сообщения, преобразованные в частотной и/или временной областях. Это означает, что эти системы, могут быть атакованы криптоаналитиком противника на уровне анализа звуковых сигналов. Поэтому ранее считалось, что наряду с высоким качеством и разборчивостью восстановленной речи аналоговые скремблеры могут обеспечить лишь низкую или среднюю, по сравнению с системами цифрового кодирования и шифрования, степень закрытия (секретности). Однако новейшие (разработанные в последние годы) алгоритмы способны обеспечить не только средний, но иногда и очень высокий уровень секретности в системах типа В (см. рис. 3).

Рис. 3. Виды систем сокрытия речевых сообщений.

АЦП/ЦАП - аналогово-цифровое/цифро-аналоговое преобразование.
Аналоговые скремблеры:

  • речевые скремблеры простейших типов на базе временных и/или частотных перестановок отрезков речи,
  • комбинированные речевые скремблеры на основе частотно-временных перестановок отрезков речи, представленные конкретнымн отсчетами, с применением цифровой обработки сигналов(В).

Цифровые системы сокрытия речи:

  • широкополосные (С)
  • узкополосные (D)

Системы типа С и D (см. рис. 3) не передают какой-либо части исходного речевого сигнала. Речевые компоненты кодируются в цифровой поток данных, который смешивается с псевдослучайной последовательностью, вырабатываемой ключевым генератором по одному из криптографических алгоритмов, и полученное таким образом закрытое речевое сообщение передается при помощи модема в канал связи, на приемном конце которого производятся обратные преобразования с целью получения открытого речевого сигнала.
Технология изготовления широкополосных систем закрытия речи типа С хорошо известна, не представляет особых трудностей техническая реализация используемых для этих целей способов кодирования речи типа АДИКМ (адаптивной дифференциальной импульсно-кодовой модуляции), ДМ (дельта-модуляции) и т.п.

Но представленная такими способами дискретизированная речь может передаваться лишь по специально выделенным широкополосным каналам связи с полосой пропускания, обычно лежащей в диапазоне 4.8-19.2 кГц, и не пригодна для передачи по линиям телефонной сети общего пользования, где требуемая скорость передачи данных должна составлять 2400 бит/с. В таких случаях используются узкополосные системы закрытия типа D (см. рис. 3), главной трудностью при реализации которых является высокая сложность алгоритмов сжатия речевых сигналов, осуществляемых в вокодерных устройствах.

Посредством дискретного кодирования речи с последующим шифрованием всегда достигалась высокая степень закрытия, но в прошлом этот метод не находил широкого распространения в повсеместно имеющихся узкополосных каналах связи из-за низкого качества восстановления передаваемой речи.

Последние достижения в развитии низкоскоростных дискретных кодеров позволили значительно улучшить качество речи без снижения надежности закрытия.

Рис. 4.

Говоря об уровне, или степени секретности систем закрытия речи, следует отметим, что эти понятия весьма условные. К настоящему времени не выработано на этот счет четких стандартов или правил. Однако в ряде источников основные уровни защиты определяют как тактический и стратегический, что в некотором смысле пересекается с понятиями практической и теоретической стойкости криптографических систем закрытия данных:

  • тактический, или низкий, уровень используется для защиты информации от подслушивания посторонними лицами на период времени, измеряемый минутами или днями. Существует большое количество простых методов, способных обеспечить такой уровень защиты при приемлемой стоимости;
  • стратегический, или высокий, уровень защиты информации от перехвата используется в ситуациях, подразумевающих, что высоко квалифицированному, технически хорошо оснащенному специалисту потребуется для дешифрования перехваченного сообщения период времени от нескольких месяцев до многих и многих лет.

Часто используется и понятие средней степени защиты, занимающее промежуточное положение между тактическим и стратегическим уровнем закрытия. Можно составить диаграмму (рис. 4), показывающую связь между различными методами закрытия речевых сигналов, степенью секретности и качеством восстановленной речи. Понятие "качество речи", используемое на диаграмме, весьма условно. Под ним, как правило, понимают узнаваемость абонента и разборчивость принимаемого речевого сигнала.

Аналоговое скремблировани


Наибольшая часть аппаратуры засекречивания речевых сигналов использует в настоящее время метод аналогового скремблирования, поскольку, во-первых, это дешевле, во-вторых, эта аппаратура применяется в большинстве случаев в стандартных телефонных каналах с полосой 3 кГц, в-третьих, обеспечивается коммерческое качество дешифрованной речи и, в-четвертых, гарантируется достаточно высокая стойкость закрытия, Аналоговые скремблеры преобразуют исходный речевой сигнал посредством изменения его амплитудных, частотных и временных параметров в различны комбинациях. Скремблированный сигнал может затем быть передан по каналу связи в той же полосе частот, как и исходный, открытый. В аппаратах такого типа используется один или несколько принципов аналогового скремблирования из числа указанных ранее.

а)Скремблирование в частотной области:

  • частотная инверсия (преобразование спектра сигнала с помощью гетеродина и фильтра),
  • частотная инверсия и смещение (частотная инверсия с меняющимся скачкообразно смещением несущей частоты), разделение полосы частот речевого сигнала на ряд поддиапазонов с последующей их перестановкой и инверсией.

в)Скремблирование во временной области (разбиение блоков или частей речи на сегменты с перемешиванием их во времени с последующим прямым и/или реверсивным считыванием);

с )Комбинация временного и частотного скремблирования.

Как правило, все перестановки каким-либо образом выделенных сегментов или участков речи во временной и/или в частотной областях осуществляются по закону псевдослучайной последовательности, вырабатываемой шифратором по ключу, меняющемуся от одного сообщения к другому. На стороне приемника выполняется дешифрование цифровых кодов, полученных из канала связи, и преобразование в аналоговую форму. Системы, работа которых основана на таком методе, являются достаточно сложными, поскольку для обеспечения высокого качества передаваемой речи требуется высокая частота дискретизации входного аналогового сигнала и соответственно высокая скорость передачи данных но каналу связи. Каналы связи, которые обеспечивают скорость передачи данных только 2400 бод, называются узкополосными, в то время, как другие, обеспечивающие скорость передачи свыше 2400 бод, относятся к широкополосным. По этому же принципу можно разделять и устройства дискретизации речи с последующим шифрованием. Несмотря на всю свою сложность, аппаратура данного типа представлена на коммерческом рынке рядом моделей, большинство из которых передает данные по каналу связи со скоростями модуляции от 2.4 до 19.2 кбит/с, обеспечивая при этом несколько худшее качество воспроизведения речи по сравнению с обычным телефоном. Основным же преимуществом таких цифровых систем кодирования и шифрования остается высокая степень закрытия речи, получаемая посредством использования широкого набора криптографических методов, применяемых для защиты передачи данных по каналам связи.
Методы речевого скремблирования впервые появились во время второй мировой воины. Среди последних достижений в этой области следует отметить широкое использование интегральных схем, микропроцессоров и процессоров цифровой обработки сигналов (ЦПОС). Все это обеспечило высокую надежность устройств закрытия речи с уменьшением их размера и стоимости. Аналоговым скремблерам удалось избежать многих трудностей, связанных с передачей речевого сигнала и/или его параметров, присущих цифровым системам закрытия речи, и в тоже время достичь определенного уровня развития, обеспечивающего среднюю и даже высокую степень защиты речевых сообщений. Поскольку скремблированные речевые сигналы в аналоговой форме лежат в той же полосе частот, что и исходные открытые, это означает, что их можно передавать по обычным коммерческим каналам связи, используемым для передачи речи, без затребования какого-либо специального оборудования, такого, как, например, модемы. Поэтому устройства речевого скремблирования не так дороги и значительно менее сложны, чем устройства дискретизации с последующим цифровым шифрованием.

Аналоговые скремблеры, по их режиму работы, можно разбить на два следующих класса:

  • статические системы, схема кодирования которых остается неизменной в течение всей передачи речевого сообщения;
  • динамические системы, постоянно генерирующие кодовые подстановки в ходе передачи (код может быть изменен в процессе передачи несколько раз в течение каждой секунды).

Очевидно, что динамические системы обеспечивают более высокую степень защиты, поскольку резко ограничивают возможность легкого прослушивания переговоров посторонними лицами.
Процесс аналогового скремблирования представляет собой сложное преобразование речевого сигнала с его последующим восстановлением (с сохранением разборчивости речи) после прохождения преобразованного сигнала по узкополосному каналу связи, подверженному воздействию шумов. Возможно преобразование речевого сигнала по трем параметрам: амплитуде, частоте и времени. Считается, что использовать амплитуду нецелесообразно, так как изменяющиеся во времени затухание канала и отношение сигнал/шум делают чрезвычайно сложным точное восстановление амплитуды переданного сигнала. Практическое применение получило только частотное и временное скремблирование и их комбинации. Как вторичные ступени скремблирования в этих системах могут использоваться ограниченные виды амплитудного скремблирования.

Частотные скремблеры

Как уже отмечалось выше, существует два основных вида частотных скремблеров инверсный и полосовой. Оба основаны на преобразованиях спектра исходного речевого сигнала для скрытия передаваемой информации и восстановлении полученного речевого сообщения путем обратных преобразований. Инверсный скремблер осуществляет преобразование речевого спектра, равносильное повороту частотной полосы речевого сигнала вокруг некоторой средней точки (рис. 5). При этом достигается эффект преобразования низких частот в высокие частоты, и наоборот.

Данный способ обеспечивает невысокий уровень закрытия, так как при перехвате легко устанавливается величина частоты, соответствующая средней точке инверсии в полосе спектра речевого сигнала. Некоторое повышение уровня закрытия обеспечивает полосносдвиговый инвертор, осуществляющий разделение полосы на две субполосы, при этом точка разбиения выступает в роли некоторого ключа системы. В дальнейшем каждая субполоса инвертируется вокруг своей средней частоты. Этот вид скремблирования, однако, также слишком прост для вскрытия при перехвате и не обеспечивает надежного закрытия. Повысить уровень закрытия можно путем изменения по некоторому закону частоты, соответствующей точке разбиения полосы речевого сигнала (ключа системы).

Рис. 5. повороту частотной полосы речевогоbсигнала вокруг некоторой средней точки

Речевой спектр можно также разделить на несколько частотных полос равной ширины и произвести их перемешивание и инверсию по некоторому правилу (ключ системы). Так функционирует полосовой скремблер (рис.6).

Рис. 6. Полосовое скремблирование (1 вариант)

Рассмотрим частотное скремблирование более подробно.
Итак, простейшей формой рассматриваемых преобразований являются преобразования сигнала в частотной области:

  • инверсии,
  • циклические инверсии и частотные перестановки.

Как отмечалось выше, простейшим частотным скремблированием является преобразование инверсии спектра. Рассмотрим, например, сигнал, расположенный в диапазоне 300-3000 Гц (см. рис.7).

Рис. 7.

Попытаемся преобразовать сигнал таким образом, чтобы поменялись местами высокие и низкие частоты. Для этого рассмотрим отдельные гармоники нашего сигнала.

- одна из гармоник, подаваемая вместе с сигналом на вход устройства, называемого смесителем, то его выходом будет сигнал Согласно известному равенству

Величины и можно выбирать. Положив и , мы получим следующий амплитудно-частотный спектр выхода смесителя (см. рис. 8).

Рис. 8.

При рассмотрении каждой гармоники сигнала и соответствующего выхода смесителя получим следующий график (см. рис. 9).

Рис. 9.

Между несущей частотой fc находятся два диапазона, называемые верхним и нижним диапазонами соответственно. Верхний диапазон аналогичен исходному сигналу, лишь перемещенному вверх (каждая частотная компонента увеличивается на fc). Нижний диапазон является зеркальным отражением исходного сигнала. Теперь, выбирая подходящую несущую частоту и используя смеситель для перемещения верхнего диапазона, мы можем получить инвертированный речевой сигнал (см. рис. 10).

Рис. 10.

Выбором несущей частоты для различных сигналов каждый из них может быть перенесен в другой частотный диапазон. Это дает возможность передавать несколько телефонных сигналов по одному каналу.

Преобразование инверсии не зависит от секретного ключа. Это — кодирование, являющееся нестойким против атак противника, обладающего аналогичным оборудованием. Развитие идеи инверсного кода, позволяющее ввести секретный ключ, состоит в использовании так называемой циклической инверсии. Суть преобразования циклической инверсии заключается в следующем.

Как мы уже заметили, если инвертированный сигнал находится в том же диапазоне, что и исходный сигнал (300 — 3000 Гц), то несущая частота равна 3300 Гц. Для другой несущей частоты, скажем 4000 Гц, получим инвертированный сигнал со спектром, изображенным на рис. 11

Рис. 11.

Этот сигнал не попадает в исходную полосу. Можно договориться переносить часть спектра, превышающую 3000 Гц, в нижнюю часть исходного спектра (см. рис. 12).

Рис. 12.

В таком переносе части спектра и заключается идея циклической инверсии. Типичный инвертор имеет от 4 до 16 различных несущих частот. Это дает такое же число возможных циклических сдвигов. С помощью ключа можно выбирать несущую частоту так, как это делается для шифра простой замены. Можно использовать также генератор псевдослучайных чисел, который выбирает изменяемую несущую частоту. Обычно для этого используют интервал в 10 или 20 мс. Реализующее такой метод устройство называют циклическим инверсным переключателем диапазона.

Подобные системы имеют две серьёзные слабости. Во-первых, в каждый момент времени имеется лишь небольшое число возможных несущих частот, в силу чего исходный сигнал может быть восстановлен их перебором с помощью сравнительно простого оборудования. Во-вторых, что более важно, остаточная разборчивость выходного сигнала для такого метода неприемлемо высока, что проявляется при непосредственном прослушивании. Третий способ изменения сигнала в частотной области состоит в делении диапазона. Спектр сигнала делится на некоторое число равных поддиапазонов, которые могут переставляться местами друг с другом. К этому можно добавить также возможность инвертирования для некоторых поддиапазонов. Эту идею проиллюстрируем следующим примером.

Пример Рассмотрим сигнал, изображенный на рис. 13. В нашем примере частотный диапазон разбит на пять равных частей, которые переставляются в соответствии с указанной нумерацией, при этом первая и пятая части инвертированы (см. рис. 14).

Всего в нашем примере имеется 5! возможных перестановок и возможностей для инвертирования.Итого -
вариантов преобразований сигнала. Это, конечно, не очень много. Хуже обстоит дело с остаточной разборчивостью. Если использовать лишь перестановки полос, то для большинства из них остаточная разборчивость достигает 10 %, что, конечно, не дает гарантии стойкости.

Рис. 13.

Рис. 14.

Некоторые причины этого легко понять. Так будет, например, если некоторые поддиапазоны остаются неизменными. Кроме того, известно, что обычно более 40 % энергии сигнала лежит в первых двух поддиапазонах, соответствующих первой форманте. Как только криптоаналитик найдет правильные позиции первых двух поддиапазонов и переместит их на нужные места, он частично восстановит сигнал и получит возможность понять фрагмент сообщения.
Можно попытаться улучшить систему защиты за счет использования некоторого числа различных перестановок, которые меняются через короткие промежутки времени с помощью генератора псевдослучайных чисел. Часто для реальных систем лучшие (с точки зрения низкой остаточной разборчивости) перестановки хранятся в ROM (памяти только для чтения), имеющейся внутри устройства.
Несмотря на то, что генератор может вырабатывать последовательность очень большого периода, и размер ключа может быть выбран достаточно большим, даже в этом случае остаточная разборчивость большой доли преобразований так велика, что система не может в полной мере обеспечить необходимую надежность защиты.
То же можно сказать вообще о любом скремблере, использующем лишь действия с частотной областью. Их применение ограничивается лишь ситуациями, когда целью является препятствие пониманию разговора для случайного слушателя или даже противника, не обладающего подходящим оборудованием. Как будет видно из дальнейшего, более совершенные системы или увеличивают ширину спектра сигнала, или вводят временные задержки в передачу. Подобные изменения влекут свои собственные проблемы и поэтому частотные скремблеры могут быть использованы только тогда, когда не требуется гарантированная стойкость.
К сказанному следует добавить замечание о числе поддиапазонов, используемых частотным скремблером. В предыдущем примере их было пять. Ясно, что с ростом этого числа значительно увеличилось бы число возможных перестановок, что привело бы к возрастанию стойкости системы. Однако введение слишком большого числа поддиапазонов связано с большими практическими трудностями. Дело в том, что на приеме необходимо восстановить исходный сигнал. Фильтры же и другие компоненты схемы вносят шумы и не являются в точности линейными системами. Любые преобразования сигнала, производимые при передаче, являются несовершенными и приводят к ухудшению его качества на выходе. Скремблеры особенно чувствительны к подобным искажениям. Поэтому увеличение числа поддиапазонов делает систему или вообще непригодной, или неэкономичной.
Изменение ключа системы позволяет повысить степень закрытия, но требует введе- ния синхронизации на приемной стороне системы. Основная часть энергии речевого сиг- нала сосредоточена в небольшой области низкочастотного спектра, поэтому выбор вари- антов перемешивания ограничен, и многие из систем характеризуются относительно высокой остаточной разборчивостью. Существенное повышение степени сокрытия сообщения может быть достигнуто путем реализации в полосовом скремблере быстрого преобразования Фурье (БПФ). При этом количество допустимых перемешиваний частотных полос значительно увеличивается, что обеспечивает высокую степень закрытия без ухудшения качества передачи сообщения. Можно дополнительно повысить степень закрытия путем осуществления задержек различных частотных компонент сигнала на разную величину.

Пример реализации такой системы показан на рис.15

Рис. 15.

Рассмотрим алгоритм скремблирования временного сигнала в частотной области. Особенностью алгоритма является его применение для линий связи, в которых применяется пакетная перелача сообщений. Каждый пакет разделяется на сэмплы. Конспективно суть алгоритма можно изложить следующим образом:

  • Осуществляется быстрое преобразование Фурье от сэмпла

Невозможно разобрать выражение (Ошибка преобразования. Сервер («http://mathoid.bmstu.cloud:10042/») сообщил: «Error:["TeX parse error: Missing argument for \\tilde"]»): \boldsymbol \tilde{U}(v_{t}) = F{U_{вх}} = FFT(U_{вх}(t))

  • Спектр разбивается на произвольные интервалы, количество которых является частью ключа

Невозможно разобрать выражение (Ошибка преобразования. Сервер («http://mathoid.bmstu.cloud:10042/») сообщил: «Error:["TeX parse error: Missing argument for \\tilde"]»): \boldsymbol \tilde{U}(v_{t}) = \tilde{U}(v_{t}) G{v_{t}}^i, \triangle v)


Разбиение на группу из N частотных интервалов с центральной частотой и шириной

  • Осуществляются спектральные перестановки в соответствии со значениям ,

  • Производится суммирование «перемешанных» спектральных интервалов (формирование «выходного» спектра) и вычисляется обратное преобразование Фурье

Невозможно разобрать выражение (Ошибка преобразования. Сервер («http://mathoid.bmstu.cloud:10042/») сообщил: «Error:["TeX parse error: Missing argument for \\tilde"]»): \boldsymbol \tilde{U}^0(v_{t}) = \sum_{i=1}^N \tilde{U}_{i}^0(v_{t})U_{вых}(t) = FFT^{-1}(\tilde{U}^0(v_{t}))


Закодированный сэмпл готов к передаче по линии связи. Восстановление принятого сообщения производится в том же порядке по известному ключу. Данный алгоритм можно модифицировать путем применения оконных преобразований, в частности вейвлет-преобразований.
Главным недостатком использования БПФ является возникновение в системе большой задержки сигнала (до 300 мс), обусловленной необходимостью использования весовых функций. Это приводит к затруднениям в работе дуплексных систем связи.

Временные скремблеры

Временные скремблеры основаны на двух основных способах закрытия: инверсии по времени сегментов речи и их временной перестановке. По сравнению с частотными скремблерами задержка у временных скремблеров намного больше, но существуют различные методы ее уменьшения. В скремблерах с временной инверсией речевой сигнал делится на последовательность временных сегментов и каждый из них передается инверсно во времени - с конца. Такие скремблеры обеспечивают ограниченный уровень закрытия, зависящий от длительности сегментов. Для достижения неразборчивости медленной речи необходимо, чтобы длина сегмента составляла около 250 мс. Это означает, что задержка системы будет равна примерно 500 мс, что может оказаться неприемлемым для некоторых приложений.
Для повышения уровня закрытия прибегают к способу перестановки временных от- резков речевого сигнала в пределах фиксированного кадра (рис. 16). Правило перестановок является ключом системы, изменением которого можно существенно повысить степень закрытия речи. Остаточная разборчивость зависит от длительностей отрезков сигнала и кадра и с увеличением последнего уменьшается.

Рис. 16.

Главным недостатком скремблера с фиксированным кадром является большая величина времени задержки системы, равная удвоенной длительности кадра. Этот недостаток устраняется в скремблере с перестановкой временных отрезков речевого сигнала со скользящим окном. В нем число комбинаций возможных перестановок ограничено таким образом, что задержка любого отрезка не превосходит установленного максимального значения. Каждый отрезок исходного речевого сигнала как бы имеет временное окно, внутри которого он может занимать произвольное место при скремблировании. Это окно скользит во времени по мере поступления в него каждого нового отрезка сигнала. Задержка при этом снижается до длительности окна.

Рассмотрим пример временного скремблирования, которое заключается в побитном изменении проходящего через систему потока данных. Практически единственной операцией, используемой в скремблере является XOR – "побитное исключающее ИЛИ". Параллельно прохождению информационного потока в скремблере по определенному правилу генерируется поток бит – кодирующий поток. Как прямое, так и обратное шифрование осуществляется наложением по XOR кодирующей последовательности на исходную.
Генерация кодирующей последовательности бит производится циклически из небольшого начального объема информации – ключа по следующему алгоритму. Из текущего набора бит выбираются значения определенных разрядов и складываются по XOR между собой. Все разряды сдвигаются на 1 бит, а только что полученное значение ("0" или "1") помещается в освободившийся самый младший разряд. Значение, находившееся в самом старшем разряде до сдвига, добавляется в кодирующую последовательность, становясь очередным ее битом (см. рис.17а и рис. 17в).

Рис. 17a.

Рис. 17в.

Из теории передачи данных криптография заимствовала для записи подобных схем - двоичную систему записи. По ней изображенный на рисунке 17а скремблер записывается комбинацией "10011(2)" – единицы соответствуют разрядам, с которых снимаются биты для формирования обратной связи.
Рассмотрим пример кодирования информационной последовательности 010111(2) скремблером 101(2) с начальным ключом 110(2).

Missdps1711.png










Реализация скремблера возможна как на электронной, так и на электрической базе, что и обеспечило его широкое применение в полевых условиях. Более того, тот факт, что каждый бит выходной последовательности зависит только от одного входного бита, еще более упрочило положение скремблеров в защите потоковой передачи данных. Это связано с неизбежно возникающими в канале передаче помехами, которые могут исказить в этом случае только те биты, на которые они приходятся, а не связанную с ними группу байт, как это имеет место в блочных шифрах.
Декодирование заскремблированных последовательностей происходит по той же самой схеме, что и кодирование. Именно для этого в алгоритмах применяется результирующее кодирование по "исключающему ИЛИ" – схема, однозначно восстановимая при раскодировании без каких-либо дополнительных вычислительных затрат. Произведем декодирование полученного фрагмента. Главная проблема шифров на основе скремблеров - синхронизация передающего (кодирующего) и принимающего (декодирующего) устройств. При пропуске или ошибочном вставлении хотя бы одного бита вся передаваемая информация необратимо теряется. Поэтому, в системах шифрования на основе скремблеров очень большое внимание уделяется методам синхронизации. На практике для этих целей обычно применяется комбинация двух методов: а) добавление в поток информации синхронизирующих битов, заранее известных приемной стороне, что позволяет ей при ненахождении такого бита активно начать поиск синхронизации с отправителем, и б) использование высокоточных генераторов временных импульсов, что позволяет в моменты потери синхронизации производить декодирование принимаемых битов информации "по памяти" без синхронизации.
Число бит, охваченных обратной связью, то есть разрядность устройства памяти для порождающих кодирующую последовательность бит называется разрядностью скремблера. Изображенный выше скремблер имеет разрядность 5. В отношении параметров криптостойкости данная величина полностью идентична длине ключа блочных шифров, который будет проанализирован далее. На данном же этапе важно отметить, что чем больше разрядность скремблера, тем выше криптостойкость системы, основанной на его использовании.
При достаточно долгой работе скремблера неизбежно возникает его зацикливание. По выполнении определенного числа тактов в ячейках скремблера создастся комбинация бит, которая в нем уже однажды оказывалась, и с этого момента кодирующая последовательность начнет циклически повторяться с фиксированным периодом. Данная проблема неустранима по своей природе, так как в N разрядах скремблера не может пребывать более 2^N комбинаций бит, и, следовательно, максимум, через, 2^N -1 циклов повтор комбинации обязательно произойдет. Комбинация "все нули" сразу же исключается из цепочки графа состояний скремблера – она приводит скремблер к такому же положению "все нули". Это указывает еще и на то, что ключ "все нули" неприменим для скремблера. Каждый генерируемый при сдвиге бит зависит только от нескольких бит хранимой в данный момент скремблером комбинации. Поэтому после повторения некоторой ситуации, однажды уже встречавшейся в скремблере, все следующие за ней будут в точности повторять цепочку, уже прошедшую ранее в скремблере.
Возможны различные типы графов состояния скремблера. На рисунке 18 приведены примерные варианты для 3-разрядного скремблера. В случае "А" кроме всегда присутствующего цикла "000">>"000" мы видим еще два цикла – с 3-мя состояниями и 4- мя. В случае "Б" мы видим цепочку, которая сходится к циклу из 3-х состояний и уже никогда оттуда не выходит. И наконец, в случае "В" все возможные состояния кроме нулевого, объединены в один замкнутый цикл. Очевидно, что именно в этом случае, когда все 2^N -1 состояний системы образуют цикл, период повторения выходных комбинаций максимален, а корреляция между длиной цикла и начальным состоянием скремблера (ключом), которая привела бы к появлению более слабых ключей, отсутствует.

Рис. 18.

Следствием одной из теорем криптографии доказывается (в терминах применительно к скремблированию), что для скремблера любой разрядности N всегда существует такой выбор охватываемых обратной связью разрядов, что генерируемая ими последовательность бит будет иметь период, равный 2^N -1 битам. Так, например, в 8- битном скремблере, при охвате 0-го, 1-го, 6-го и 7-го разрядов действительно за время генерации 255 бит последовательно проходят все числа от 1 до 255, не повторяясь ни разу.
Схемы с выбранными по данному закону обратными связями называются генераторами последовательностей наибольшей длины (ПНД), и именно они используются в скремблирующей аппаратуре. Из множества генераторов ПНД заданной разрядности во времена, когда они реализовывались на электрической или минимальной электронной базе выбирались те, у которых число разрядов, участвующих в создании очередного бита, было минимальным. Обычно генератора ПНД удавалось достичь за 3 или 4 связи. Сама же разрядность скремблеров превышала 30 бит, что давало возможность передавать до 2^40 бит = 100 Мбайт информации без опасения начала повторения кодирующей последовательности.
ПНД неразрывно связаны с математической теорией неприводимых полиномов. Оказывается, достаточно чтобы полином степени N не был представим по модулю 2 в виде произведения никаких других полиномов, для того, чтобы скремблер, построенный на его основе, создавал ПНД. Например, единственным неприводимым полиномом степени 3 является x^3+x+1, в двоичном виде он записывается как 1011(2)(единицы соответствуют присутствующим разрядам). Скремблеры на основе неприводимых полиномов образуются отбрасыванием самого старшего разряда (он всегда присутствует, а следовательно, несет информацию только о степени полинома), так на основе указанного полинома, можно создать скремблер 011(2) с периодом зацикливания 7(=2^3-1). Естественно, что на практике применяются полиномы значительно более высоких порядков.

Комбинированное скремблировани

Используя комбинацию временного и частотного скремблирования, можно значитель- но повысить степень закрытия речи. Комбинированный скремблер намного сложнее обычного и требует компромиссного решения по выбору уровня закрытия, остаточной разборчивости, времени задержки, сложности системы и степени искажений в восстанов- ленном сигнале. Количество же всевозможных систем, работающих по такому принципу, ограничено лишь человеческим воображением (И ЖЕЛАНИЕМ СТУДЕНТА).
В качестве примера такой системы рассмотрим скремблер, схема которого представлена на рис. 19, где операция частотно-временных перестановок дискретизированных отрезков речевого сигнала осуществляется при помощи четырех процессоров цифровой обработки сигналов, один из которых может реализовывать функцию генератора случайной последовательности (ключа системы закрытия).

Рис. 19.

В таком скремблере спектр оцифрованного аналогово-цифровым преобразователем (АЦП) речевого сигнала разбивается посредством использования алгоритмов цифровой обработки сигналов на частотно-временные элементы, которые затем перемешиваются на частотно-временной плоскости в соответствии с одним из криптографических алгоритмов (Рис. 20) и суммируются, не выходя за пределы частотного диапазона исходного сигнала.

Рис. 20. Принцип работы комбинированого скремблера

В представленной на (рис. 20) системе закрытия речи используются четыре процессора цифровой обработки сигналов. Количество частотных полос спектра, в которых производятся перестановки с возможной инверсией спектра, - четыре.

Максимальная задержка частотно-временного элемента по времени равна пяти. Полученный таким образом закрытый сигнал при помощи цифро-аналогового преобразователя (ЦАП) переводится в аналоговую форму и подается в канал связи. На приемном конце производятся обратные операции по восстановлению полученного закрытого речевого сообщения. Стойкость представленного алгоритма сравнима со стойкостью систем цифрового закрытия речи. Скремблеры всех типов, за исключением простейшего (с частотной инверсией), вносят искажения в восстановленный речевой сигнал. Границы временных сегментов нарушают целостность сигнала, что неизбежно приводит к появлению внеполосных составляющих. Нежелательное влияние оказывают и групповые задержки составляющих речевого сигнала в канале связи. Результатом искажений является увеличение минимально допустимого отношения сигнал/шум, при котором может осуществляться надежная связь.

Однако, несмотря на указанные проблемы, методы временного и частотного скремблирования, а также комбинированные методы успешно используются в коммерческих каналах связи для защиты конфиденциальной информации.

Дискретизация сигнала с последующим шифрованием (цифровое скремблирование)

Альтернативным аналоговому скремблированию методом передачи речи в закрытом виде является шифрование речевых сигналов, преобразованных в цифровую форму, перед их передачей ( см. рис. 1-С и 1-D). Этот метод обеспечивает более высокий уровень закрытия по сравнению с описанными выше аналоговыми методами.

В основе устройств работающих по такому принципу, лежит представление речевого сигнала в виде цифровой последовательности, закрываемой по одному из криптографических алгоритмов. Передача данных, представляющих дискретизированные отсчеты речевого сигнала или его параметры, по телефонным сетям, как и в случае29 устройств шифрования алфавитно-цифровой и графической информации, осуществляется через устройства, называемые модемами.
Основной целью при разработке устройств цифрового закрытия речи является сохранение тех ее характеристик, которые наиболее важны для восприятия слушателем. Одним из путей является сохранение формы речевого сигнала. Это направление применяется в широкополосных цифровых системах закрытия речи. Однако использование свойств избыточности информации, содержащейся в человеческой речи, более эффективно. Это направление разрабатывается в узкополосных цифровых системах закрытия речи.

Ширину спектра речевого сигнала можно считать приблизительно равной 3,3 кГц, а для достижения хорошего качества восприятия необходимое соотношение сигнал/шум должно составлять 30 дБ. Тогда, согласно теории Шеннона, требуемая скорость передачи дискретизированной речи будет соответствовать величине 33 кбит/с.

С другой стороны, структура речевого сигнала представляет собой последовательность звуков (фонем), передающих информацию. Поскольку в английском языке около 40 фонем, а в немецком – 70, то для представления фонетического алфавита потребуется 6-7 бит. Максимальная скорость произношения не превышает 10 фонем в секунду. Следовательно, минимальная скорость передачи основной технической информации речи не ниже 60-70 бит/с.

Сохранение формы сигнала требует высокой скорости передачи и, соответственно, использования широкополосных каналов связи. Например, при импульсно-кодовой модуляции (ИКМ), используемой в большинстве телефонных сетей, необходима скорость передачи, равная 64 кбит/с. В случае применения адаптивной дифференциальной ИКМ она понижается до 32 кбит/с и ниже. Для узкополосных каналов, не обеспечивающих такие скорости передачи, требуются устройства, исключающие избыточность речи до ее передачи. Снижение информационной избыточности речи достигается параметризацией речевого сигнала, при которой характеристики речи, существенные для восприятия, сохраняются. Таким образом, правильное применение методов цифровой передачи речи с высокой информационной эффективностью является крайне важным направлением разработок устройств цифрового закрытия речевых сигналов. В таких системах устройство кодирования речи (вокодер), анализируя форму речевого сигнала, производит оценку параметров переменных компонент модели генерации речи и передает эти параметры в цифровой форме по каналу связи на синтезатор, где согласно этой модели по принятым параметрам синтезируется речевое сообщение. В таких моделях речевой сигнал представляется в виде нестационарного процесса с ограниченной скоростью изменения параметров из-за механической инерции голосовых органов человека. На малых интервалах времени (до 30 мс) параметры сигнала могут рассматриваться как постоянные. Чем короче интервал анализа, тем более точно может быть представлена динамика речи, но при этом требуется более высокая скорость передачи данных. В большинстве практических случаев используются 20-миллисекундные интервалы и достигается скорость передачи данных 2400 бит/c.

Наиболее распространенными типами вокодеров являются полосные и с линейным предсказанием. Целью любого вокодера является передача параметров, характеризующих речь и имеющих низкую информационную скорость. Полосный вокодер достигает этого путем передачи амплитуды нескольких частотных полос речевого спектра. Каждый полосовой фильтр такого вокодера возбуждается при попадании энергии речевого сигнала в его полосу пропускания. Так как спектр речевого сигнала изменяется относительно медленно, набор амплитуд выходных сигналов фильтров образует пригодную для вокодера основу. В синтезаторе параметры амплитуды каждого канала управляют коэфициентами усиления фильтра, характеристики которого подобны характеристикам фильтра анализатора. Таким образом, структура полосного вокодера базируется на двух блоках фильтров – для анализа и синтеза. Увеличение числа каналов улучшает разборчивость, но при этом требуется большая скорость передачи. Компромиссным решением обычно становится выбор 16-20 каналов при скорости передачи около 2400 бит/с. Полосовые фильтры в цифровом исполнении строятся на базе аналоговых фильтров Баттерворта, Чебышева, эллиптических и других. Каждый 20-миллисекундный отрезок времени кодируется 48 битами, из них 6 бит отводится на информацию об основном тоне, один бит на информацию «тон-шум», характеризующую наличие или отсутствие вокализованного участка речевого сигнала, остальные 41 бит описывают значения амплитуд сигналов на выходе полосовых фильтров. Существуют различные модификации полосного вокодера, приспособленные для каналов с ограниченной полосой пропускания. При отсутствии жестких требований на качество синтезированной речи удается снизить количество бит передаваемой информации с 48 до 36 на каждые 20 миллисекунд, что обеспечивает снижение скорости до 1800 бит/с. Уменьшение скорости передачи до 1200 бит/с возможно в случае передачи каждого второго кадра речевого сигнала и в нем дополнительной информации о синтезе пропущенного кадра. Потери в качестве синтезированной речи от таких процедур не слишком велики, достоинством же является снижение скорости передачи сигнала.

Наибольшее распространение среди систем цифрового кодирования речи с последующим шифрованием получили системы, основным узлом которых являются вокодеры с линейным предсказанием речи (ЛПР). Математическое представление модели цифрового31 фильтра, используемого в вокодере с линейным предсказанием, имеет вид кусочно- линейной аппроксимации процесса формирования речи с некоторыми упрощениями, а именно: каждый текущий отсчет речевого сигнала является линейной функцией Р предыдущих отсчетов. Несмотря на несовершенство такой модели, ее параметры обеспечивают приемлемое представление речевого сигнала. В вокодере с линейным предсказанием анализатор осуществляет минимизацию ошибки предсказания, представляющей собой разность текущего отсчета речевого сигнала и средневзвешенной суммы Р предыдущих отсчетов, где Р – порядок предсказания, а весовые коэффициенты являются коэффициентами линейного предсказания. Оценка качества проводится по минимуму среднеквадратической величины ошибки предсказания. Существует несколько методов минимизации ошибки. Общим для всех является то, что при оптимальной величине коэффициентов предсказания спектр сигнала ошибки приближается к белому шуму и соседние значения ошибки имеют минимальную корреляцию. Известные методы делятся на две категории:

  • Последовательные
  • Боковые, которые получили наибольшее распространение

В вокодере с линейным предсказанием речевая информация передается тремя параметрами: амплитудой, решением «тон/шум» и периодом основного тона для вокализованных звуков. Так, согласно федеральному стандарту США, период анализируемого отрезка речевого сигнала составляет 22,5 мс, что соответствует 180 отсчетам при частоте дискретизации 8 кГц. Кодирование в этом случае осуществляется 54 битами, что соответствует скорости передачи 2400 бит/с. При этом 41 бит отводится на кодирование десяти коэффициентов предсказания, 5 – на кодирование величины амплитуды, 7 – на передачу периода основного тона, и 1 бит определяет решение «тон/шум». При осуществлении подобного кодирования предполагается, что все параметры независимы, однако в естественной речи параметры коррелированы и возможно значительное снижение скорости передачи данных без потери качества, если правило кодирования оптимизировано с учетом зависимости всех параметров. Такой подход известен под названием векторного кодирования. Его применение к вокодеру с линейным предсказанием позволит снизить скорость передачи данных до 800 бит/с и менее с очень малой потерей качества.

Основной особенностью использования систем цифрового закрытия речевых сигналов является необходимость использования модемов. В принципе возможны следующие подходы при проектировании систем цифрового закрытия речевых сигналов:


1)цифровая последовательность параметров речи с выхода вокодерного устройства подается на вход шифратора, где подвергается преобразованию по одному из криптог- рафических алгоритмов, затем поступает через модем в канал связи, на приемной стороне которого осуществляются обратные операции по восстановлению речевого сигнала, в которых задействованы модем и дешифратор (см. рис.1.D). Шифрующие/дешифрующие функции обеспечиваются либо в отдельных устройствах, либо в программно-аппаратной реализации самого вокодера;
2) шифрующие/дешифрующие функции обеспечиваются самим модемом (так называемый засекречивающий модем) обычно по известным криптографическим алгоритмам типа DES и другим. Цифровой поток, несущий информацию о параметрах речи, с выхода вокодера непосредственно поступает на такой модем. Организация связи по каналу аналогична вышеприведенной.

Критерии оценки систем сокрытия речи

Существуют четыре основных критерия, по которым оцениваются характеристики устройств закрытия речевых сигналов, а именно:

  • разборчивость речи,
  • узнаваемость говорящего,
  • степень сокрытия,
  • основные технические характеристики системы

Приемлемым или коммерческим качеством восстановленной на приемном конце речи считается такое, когда слушатель может без труда определить голос говорящего и смысл произносимого сообщения. Помимо этого, под хорошим качеством передаваемого речевого сигнала подразумевается и возможность воспроизведения эмоциональных оттенков и других специфических эффектов разговора, присущих беседам tet-a-tet. Влияющие на качество восстановленного речевого сигнала параметры узкополосных закрытых систем передачи речи определяются способами кодирования, методами модуляции, воздействием шума, инструментальными ошибками и условиями распространения. Шумы и искажения воздействуют на характеристики каждой компоненты системы по-разному, и снижение качества, ощущаемое пользователем, происходит от суммарного эффекта понижения характеристик отдельных компонент. Существующие объективные методы оценки качества речи и систем не применимы для сравнения характеристик узкополосных дискретных систем связи, в которых речевой сигнал преобразуется в систему параметров на передающей стороне, передается по каналу связи, а затем синтезируется в речевой сигнал в приемнике.
Существующие субъективные методы измерений разборчивости и естественности отличаются значительной трудоемкостью, поскольку в этом деле многое зависит от ис- пользуемого словаря, выбранного канала связи, диалекта, возраста и эмоционального состояния испытуемых дикторов. Поэтому проведение измерений для получения статистически надежных и повторяемых оценок параметров системы при изменяющихся условиях требует больших затрат.
При использовании радиоканалов эти трудности еще более возрастают из-за неопределенности условий распространения, и достичь повторяемости результатов невозможно без применения моделей радиоканалов. Для дуплексных систем дополнительное влияние на качество оказывает временная задержка сигнала, вносимая речевым скремблером или шифратором. Поскольку основным показателем секретности передаваемых речевых сообщений является его неразборчивость при перехвате потенциальными подслушивающими лицами, сравнение по степеням защиты является определяющим моментом при выборе пользователем конкретной системы закрытия речи. В основном распределение по уровням закрытия речевых сообщений соответствует ранее приведенной диаграмме на рис.2. Как правило, аналоговые скремблеры используются там, где применение цифровых систем закрытия речи затруднено из-за наличия возможных ошибок передачи (наземные линии связи с плохими характеристиками или каналы дальней радиосвязи), обеспечивают тактический уровень защиты и хорошо предохраняют переговоры от посторонних «случайных ушей», имеющих ограниченные ресурсы, будь то соседи или сослуживцы. Для таких применений годятся системы со статическим закрытием, то есть осуществляющие шифрование по фиксированному ключу.
Если же необходимо сохранить конфиденциальность информации от возможных конкурентов, обладающих достаточным техническим и специальным оснащением, то нужно применять аналоговые скремблеры среднего уровня закрытия с динамически меняющимся в процессе разговора ключом. Естественно, что эти системы будут дороже, чем системы закрытия с фиксированным ключом, однако они настолько осложнят работу неприятелей по разработке дешифрующего алгоритма, что время, потраченное на это, значительно обесценит добытую информацию из перехваченного сообщения.

Поскольку в таких устройствах закрытия, как правило, перед началом сообщения передается синхропоследовательность, содержащая часть дополнительной информации о ключе именно этого передаваемого сообщения, у противника имеется только один шанс попытаться его раскрыть, перебрав широкое множество ключевых установок, и, если ключи меняются ежедневно, то даже при известном алгоритме преобразования речи неприятелю придется перебрать много тысяч вариантов в поисках истинной ключевой подстановки. В случае, если есть предположение, что в целях добывания крайне интересующей его информации противник может воспользоваться услугами высококвалифицированных специалистов и их техническим арсеналом, то для того, чтобы быть уверенным в отсутствии утечки информации, необходимо применять системы закрытия речи, обеспечивающие стратегическую (самую высокую) степень защиты. Это могут обеспечить лишь устройства дискретизации речи с последующим шифрованием и новый тип аналоговых скремблеров. Последние и используют методы преобразования аналогового речевого сигнала в цифровую форму, затем применяют методы криптографического закрытия, аналогичные тем, что используются для закрытия данных, после чего результирующее закрытое сообщение преобразуется обратно в аналоговый сигнал и подается в линию связи. Для раскрытия полученного сигнала на приемном конце производятся обратные преобразования. Эти новейшие гибридные устройства легко адаптируются к существующим коммуникационным сетям и предлагают значительно более высокий уровень защиты речевых сообщений, чем традиционные аналоговые скремблеры, с сохранением всех преимуществ последних в разборчивости и узнаваемости восстановленной речи. Следует отметить, что в системах засекречивания речи, основанных на шифре перестановки N речевых элементов, общее число ключей перестановок равно N!
Однако это число не отражает реальной криптографической стойкости системы из-за избыточности информации, содержащейся в речевом сигнале, а также из-за разборчивости несовершенным образом переставленной в инвертированной речи. Поэтому криптоаналитику противника часто необходимо опробовать лишь К<<N ! случайных перестановок для вскрытия речевого кода. Этот момент следует учитывать при выборе надежной системы аналогового скремблирования. Ниже приведены некоторые виды скремблеров и их характеристики

Основные характеристики скремблеров и вокодеров

Наименование скремблера или вокодер Назначение устройств Метод шифрования Количество комбинаций ключей Режим работы Время установления связи, с Наличие сертификатов
SCR-M1.2 Защита абонентской лини мозаичный 2х1018 дуплексны 40 Минсвязи
SCR-M1.2 min Защита абонентской линии мозаичный 2х1018 дуплексный 40 Минсвязи
SCR-M1.2 multi Защита абонентской линии мозаичный 2х1018 дуплексный 40 Минсвязи
ACS-2 Scrambler Защита телефонного тракта частотная инверсии 13122 дуплексный 2,5 Минсвязи
Орех-41хх Защита телефонного тракта мозаичный IDEA 1015--1038 дуплексный 1-10 Нет
Орех-A Защита телефонного тракта мозаичный IDEA 1036 дуплексный 1-7 Минсвязи
Voice Coder-2400 Защита телефонного тракта спец. алгоритм защиты нет данных дуплексный нет данных Гостехкомиссии
Грот, Грот-С Защита телефонного тракта мозаичный 2х1018 дуплексный 30 Минсвязи

Тенденции развития систем сокрытия речевых сообщени

Целью современных исследований методов закрытия и обработки речевых сигналов является улучшение параметров для заданных каналов передачи с использованием достижении микроэлектронной технологии. В ближайшие десять лет не ожидается каких-либо значительных изменений в области аналогового скремблировання. Ожидается, что аналоговые скремблеры и дальше будут использоваться на некачественных линиях связи, пока не будут созданы надежные модемы с исправлением ошибок, возникающих в процессе цифровой передачи по таким Некоторые публикации свидетельствуют о том, что развитие цифровых процессоров обработки сигналов (ЦПОС) позволит гораздо эффективнее использовать существующие алгоритмы при общем снижении габаритов и энергопотребления аппаратуры закрытия речевых сигналов. Благодаря развитию ЦПОС уже удалось намного усложнить полосовые скремблеры, по мере совершенствования которых легче будет реализовывать сложные методы скремблирования, например, комбинированные частотно-временные.

Применение ЦПОС позволит повысить качество речи за счет более точных методов фильтрации и обработки. В скором времени следует ожидать появления на рынке достаточного количества аналоговых скремблеров нового типа, обеспечивающих36 уровень защиты речевых сигналов, сравнимый с цифровыми устройствами закрытия речи, при высоком качестве и узнаваемости восстановленного речевого сигнала, присущего аналоговым скремблерам.

Рост спроса на простейшие скремблеры в таких областях, где они раньше не применялись, привел к появлению устройств закрытия речи, реализованных в одном кристалле. Так в публикациях сообщается о начале производства специализированной микросхемы, позволяющей осуществлять алгоритм закрытия речи на основе временных перестановок и предназначенной для использования в радиосвязи такси и автобусов. В конце 90-х годов среди систем дискретизации речи с последующим шифрованием наряду с последующим развитием систем закрытия речевых сигналов на основе DES-алгоритмов ожидается широкое распространение криптографических систем с открытыми ключами, что, например, позволит создать новую защищенную систему телефонной связи с числом абонентов до 3 млн. для нужд министерства обороны США и его подрядчиков. Основные усилия в области совершенствования дискретной техники кодирования направлены на соединение высоких качеств звучания синтезированной речи в среднескоростных вокодерах с достоинством низкоскоростных преобразователей - малой полосой частот. Одним из возможных способов является многоимпульсное возбуждение вокодера, способное заменить параметры основного тона и признаки "тон/шум" набором импульсов с различными амплитудами. Развитием идеи векторного кодирования является построение кодовозбуждающегося и самовозбуждающегося вокодеров. Основной принцип их работы сходен с многоимпульсным возбуждением. Передаваемые параметры заменяются единственным адресом, выбирающим наиболее подходящую форму возбуждающего сигнала из числа сигналов, записанных в банке кодов. Главная трудность реализации многоимпульсного и векторного методов состоит в большом количестве расчетов, проводимых анализатором с целью оптимального выбора формы сигнала возбуждения. Поэтому определенные усилия направлены на упрощение этого анализа. Дальнейшее снижение требуемой скорости передачи возможно путем параметризации огибающей спектра речи в зависимости от частот формант и амплитуд. Трудность точной и надежной идентификации формант обуславливает низкое качество форматного вокодера. Однако при правильном управлении его синтезатор восстанавливает речь с высоким качеством. Использование коэффициентов линейного предсказания для определения частот формант позволит сочетать свойства формантного вокодера и вокодера с линейным предсказанием, но при более низкой скорости передачи. Ожидается доведение скорости передачи до величины 600 бит/с. В большинстве технических приложений используется язык с ограниченным словарем, и переход к кодированию лишь некоторых звуков и слов может намного снизить требования к скорости передачи. Например, для словаря в 500 слов требуемая скорость не превосходит 30 бит/с. Повышенная чувствительность к ошибкам канала связи может быть преодолена использованием помехоустойчивого кодирования. Потенциальный недостаток таких систем заключается в том, что синтезированная на приемной стороне речь не будет содержать индивидуальных характеристик голоса говорящего. Однако эту трудность можно преодолеть, используя признак аутентичности, передаваемый заранее. В будущем станет возможным управление синтезатором для имитации характеристики говорящего с использованием информации, содержащейся в посылке аутентичности.